Recent Trends in Supercapacitor Research: Sustainability in Energy and Materials

超级电容器 材料科学 纳米技术 储能 杂原子 电极 电容 化学 功率(物理) 戒指(化学) 物理化学 量子力学 有机化学 物理
作者
Daria V. Chernysheva,Н. В. Смирнова,Valentine P. Ananikov
出处
期刊:Chemsuschem [Wiley]
卷期号:17 (5) 被引量:5
标识
DOI:10.1002/cssc.202301367
摘要

Abstract Supercapacitors (SCs) have emerged as critical components in applications ranging from transport to wearable electronics due to their rapid charge‐discharge cycles, high power density, and reliability. This review offers an analysis of recent strides in supercapacitor research, emphasizing pivotal developments in sustainability, electrode materials, electrolytes, and ′smart SCs′ designed for modern microelectronics with attributes such as flexibility, stretchability, and biocompatibility. Central to this discourse are two dominant electrode materials: carbon materials (CMs), primarily in electric double layer capacitors (EDLCs), and pseudocapacitive materials, involving oxides/hydroxides, chalcogenides, metal‐organic frameworks, conductive polymers and metal nitrides such as MXene. Despite EDLCs′ historical use, challenges such as low energy density persist, with heteroatom introduction into the carbon lattice seen as a solution. Concurrently, pseudocapacitive materials dominate recent studies, with efficiency enhancement strategies, such as the creation of hybrids based on different types of materials, surface structural engineering and doping, under exploration. Electrolyte innovation, especially the shift towards gel polymer electrolytes for flexible SCs, and the harmonization of electrode materials with SC designs are highlighted. Emphasis is given to smart SCs with novel attributes such as self‐charging, self‐healing, biocompatibility, and environmentally conscious designs. In summary, the article underscores the drive in sustainable supercapacitor research to achieve high energy and power density, steering towards SCs that are efficient and versatile and involving bioderived/biocompatible SC materials. This brief review is based on selected recent references, offering depth combined with an accessible overview of the SC landscape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
CC发布了新的文献求助10
1秒前
科研通AI2S应助LHL采纳,获得10
2秒前
3秒前
能干的书包完成签到,获得积分10
3秒前
顾矜应助tg113d采纳,获得10
4秒前
请叫我表情帝完成签到 ,获得积分10
4秒前
汉堡包应助wty采纳,获得10
5秒前
7秒前
隐形曼青应助ai zs采纳,获得10
8秒前
慕青应助wood采纳,获得10
9秒前
9秒前
爆米花应助CC采纳,获得10
9秒前
王亚茹发布了新的文献求助10
10秒前
qiong发布了新的文献求助10
12秒前
Singularity应助科研通管家采纳,获得20
16秒前
Singularity应助科研通管家采纳,获得20
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
不配.应助科研通管家采纳,获得20
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
不吃榴莲完成签到,获得积分10
18秒前
东方一斩发布了新的文献求助30
19秒前
大模型应助雪要努力ya采纳,获得30
20秒前
20秒前
如意的豆芽完成签到,获得积分10
21秒前
21秒前
周Z完成签到,获得积分10
21秒前
22秒前
23秒前
qiong完成签到,获得积分10
24秒前
李爱国应助kaka091采纳,获得10
24秒前
26秒前
xdd完成签到 ,获得积分10
26秒前
tg113d发布了新的文献求助10
27秒前
min17完成签到,获得积分10
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145219
求助须知:如何正确求助?哪些是违规求助? 2796603
关于积分的说明 7820639
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305309
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464