Towards automated 3D evaluation of water leakage on a tunnel face via improved GAN and self-attention DL model

分割 变压器 计算机科学 人工智能 泄漏(经济) 发掘 模式识别(心理学) 工程类 电气工程 岩土工程 电压 经济 宏观经济学
作者
Chuangui Wu,Hongwei Huang,Le Zhang,Jiayao Chen,Tong Yue,Mingliang Zhou
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:142: 105432-105432
标识
DOI:10.1016/j.tust.2023.105432
摘要

Grasping the segmentation and three-dimensional (3D) positioning information of the water leakage area on a rock tunnel face is of great significance for determining the necessary construction arrangements to ensure the safety of tunnel excavation. This paper presents a novel method for automated 3D evaluation of a tunnel leakage area based on an improved Generative adversarial network (GAN) and Swin Transformer model. First, this paper solves the shortcomings of insufficient and unbalanced data in the original leakage image datasets obtained from mountain and submarine tunnel projects, by using new images generated by an improved lightweight GAN model that establishes the GAN-based WIIN-2 dataset. The leakage images in this dataset are then divided into five categories. Afterwards, a newly developed high-performance Swin Transformer model combines shift windows and a self-attention mechanism to produce intelligent segmentation of the leakage area. The segmentation results of the Swin Transformer model on the GAN-based WIIN-2 dataset achieves mAcc, mIoU, mF score, mPrecision and mRecall metrics of 93.1%, 91.5%, 82.83%, 85.62% and 80.3%, respectively. The segmentation results of the DL models (Swin Transformer, Deeplab V3+, Fast CNN and Unet) are subsequently compared. The Swin Transformer model performs better than the other three models in terms of the five evaluation metrics and segmentation efficiency, which indicates that the Swin Transformer model is an improvement on current methods for segmenting leakage areas on a rock tunnel face. Finally, the novel 3D leakage area location model proposed in this work is used to visualize and reconstruct the 3D coordinates of the leakage area on the rock tunnel face.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助和谐绿竹采纳,获得30
2秒前
Ywffffff发布了新的文献求助10
2秒前
pencil123发布了新的文献求助10
2秒前
2秒前
Singularity应助zzz采纳,获得10
3秒前
发发发发完成签到,获得积分10
4秒前
4秒前
小李发布了新的文献求助10
5秒前
5秒前
malinting完成签到,获得积分20
6秒前
日尧发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助tx采纳,获得10
7秒前
英姑应助guyan采纳,获得10
7秒前
7秒前
爆米花应助墨染清风凉采纳,获得10
7秒前
yht.123完成签到 ,获得积分10
8秒前
共享精神应助小胖采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
你想读博吗应助fighting采纳,获得10
11秒前
小林发布了新的文献求助10
12秒前
安然发布了新的文献求助20
13秒前
14秒前
FashionBoy应助Mp4采纳,获得10
14秒前
daisy发布了新的文献求助10
15秒前
15秒前
白日梦我发布了新的文献求助10
15秒前
齐刘海发布了新的文献求助10
15秒前
墨染清风凉完成签到,获得积分10
16秒前
乐天发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515510
求助须知:如何正确求助?哪些是违规求助? 3097850
关于积分的说明 9236939
捐赠科研通 2792825
什么是DOI,文献DOI怎么找? 1532705
邀请新用户注册赠送积分活动 712209
科研通“疑难数据库(出版商)”最低求助积分说明 707201