水溶液
阳极
锌
枝晶(数学)
法拉第效率
化学工程
金属
水溶液中的金属离子
电偶阳极
电解质
电极
化学
无机化学
有机化学
阴极保护
物理化学
几何学
数学
工程类
作者
Yang Cao,Wenxi Gu,Xiaomin Huang,Heng Cao,Maolin Yang,Yanhua Long,Pingli Wu,Yi Yang,Yuxiao Zeng,Yijia Luo,Lieyuan Zhang,Qiaoji Zheng,Dunmin Lin
标识
DOI:10.1016/j.electacta.2023.143286
摘要
Aqueous zinc ion batteries (AZIBs) have developed into a promising novel energy storage system by reason of their low cost, high safety and abundant natural reserves; however, uncontrolled dendrite growth and serious side reactions on the surface of Zn metal anode pose significant obstacles to their practical implementation. Herein, a high-bonding-strength hydrophobic artificial interface layer of zeolite imidazole framework-8 (ZIF-8) is in-situ constructed on the surface of Zn metal anode by the coordination reaction amid pre-oxidized commercial Zn foil and 2-methylimidazole (IZIF-8@Zn). The Zn metal electrode with in-situ grown protective layer processes low activation energy of 46.29 kJ mol−1 and high ionic conductivity of 4.28 mS cm−1, accelerating the interface transfer of zinc ions; moreover, the in-situ grown ZIF-8 layer with the excellent adhesion to zinc, strong hydrophobicity and high porosity may separate Zn metal from aqueous electrolyte, act as a desolvation layer for Zn ions and homogenize the distribution of Zn2+ on anode surface, inhibiting side reactions, restricting 2D diffusion, promoting Zn deposition kinetics and thus squelching dendrite growth. Consequently, the IZIF-8@Zn||IZIF-8@Zn symmetric cell indicates a high-stable lifespan over 2000 h at 0.5 mA cm−2 and 0.5 mAh cm−2 and delivers the average Coulombic efficiency (CE) of 99.59 % at 1 mA cm−2 and 1 mAh cm−2. Moreover, the IZIF-8@Zn//VO2 full-cell possesses a high initial capacity of 147 mAh g−1 at 5 A g−1 with the excellent capacity retention of 71.80 % after 1000 cycles. This investigation proposes a useful strategy for in-situ growing the protective layer with unique characteristics of structure and micromorphology on the surface of metal anodes to effectively prohibit side reactions and dendrite growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI