Personalized federated reinforcement learning: Balancing personalization and experience sharing via distance constraint

强化学习 计算机科学 个性化 联合学习 约束(计算机辅助设计) 正规化(语言学) 分布式计算 人工智能 万维网 机械工程 工程类
作者
Weicheng Xiong,Quan Liu,Fanzhang Li,Bangjun Wang,Fei Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122290-122290 被引量:1
标识
DOI:10.1016/j.eswa.2023.122290
摘要

Traditional federated reinforcement learning methods aim to find an optimal global policy for all agents. However, due to the heterogeneity of the environment, the optimal global policy is often only a suboptimal solution. To resolve this problem, we propose a personalized federated reinforcement learning method, named perFedDC, which aims to establish an optimal personalized policy for each agent. Our method involves creating a global model and multiple local models, using the l2-norm to measure the distance between the global model and the local model. We introduce a distance constraint as a regularization term in the update of the local model to prevent excessive policy updates. While the distance constraint can facilitate experience sharing, it is important to strike a balance between personalization and sharing appropriately. As much as possible, agents benefit from the advantages of shared experience while developing personalization. The experiments demonstrated that perFedDC was able to accelerate agent training in a stable manner while still maintaining the privacy constraints of federated learning. Furthermore, newly added agents to the federated system were able to quickly develop effective policies with the aid of convergent global policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
藜崝完成签到 ,获得积分10
2秒前
wang发布了新的文献求助10
4秒前
鳗鱼忆山完成签到 ,获得积分10
4秒前
iNk应助科研通管家采纳,获得10
5秒前
iNk应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
罗布林卡发布了新的文献求助10
6秒前
8秒前
12秒前
liuniuniu完成签到,获得积分10
12秒前
Murray应助xiao采纳,获得10
13秒前
zorro3574发布了新的文献求助10
13秒前
单纯的易文完成签到 ,获得积分10
14秒前
15秒前
完美世界应助zml采纳,获得10
16秒前
胜天半子应助西又木采纳,获得10
17秒前
18秒前
20秒前
20秒前
慕青应助玉衡采纳,获得10
22秒前
科研小bai完成签到,获得积分10
22秒前
28秒前
黄寒聪发布了新的文献求助10
29秒前
30秒前
罗布林卡完成签到,获得积分0
30秒前
jianghs完成签到,获得积分0
32秒前
chen应助wang采纳,获得10
32秒前
33秒前
zml完成签到,获得积分10
34秒前
脑洞疼应助lcp采纳,获得10
34秒前
江峰发布了新的文献求助10
35秒前
zorro3574发布了新的文献求助10
35秒前
Jzhang发布了新的文献求助10
35秒前
lili发布了新的文献求助10
37秒前
39秒前
caohuijun完成签到,获得积分10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352928
求助须知:如何正确求助?哪些是违规求助? 2977777
关于积分的说明 8681926
捐赠科研通 2658892
什么是DOI,文献DOI怎么找? 1455972
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884