Personalized federated reinforcement learning: Balancing personalization and experience sharing via distance constraint

强化学习 计算机科学 个性化 联合学习 约束(计算机辅助设计) 正规化(语言学) 分布式计算 人工智能 万维网 机械工程 工程类
作者
Weicheng Xiong,Quan Liu,Fanzhang Li,Bangjun Wang,Fei Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122290-122290 被引量:1
标识
DOI:10.1016/j.eswa.2023.122290
摘要

Traditional federated reinforcement learning methods aim to find an optimal global policy for all agents. However, due to the heterogeneity of the environment, the optimal global policy is often only a suboptimal solution. To resolve this problem, we propose a personalized federated reinforcement learning method, named perFedDC, which aims to establish an optimal personalized policy for each agent. Our method involves creating a global model and multiple local models, using the l2-norm to measure the distance between the global model and the local model. We introduce a distance constraint as a regularization term in the update of the local model to prevent excessive policy updates. While the distance constraint can facilitate experience sharing, it is important to strike a balance between personalization and sharing appropriately. As much as possible, agents benefit from the advantages of shared experience while developing personalization. The experiments demonstrated that perFedDC was able to accelerate agent training in a stable manner while still maintaining the privacy constraints of federated learning. Furthermore, newly added agents to the federated system were able to quickly develop effective policies with the aid of convergent global policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风格化橙发布了新的文献求助10
刚刚
1秒前
小杭76应助香菜农场主采纳,获得10
2秒前
所所应助番茄豆丁采纳,获得80
2秒前
3秒前
3秒前
共享精神应助何雨航采纳,获得10
3秒前
小袁完成签到 ,获得积分10
5秒前
搜集达人应助John采纳,获得10
5秒前
英俊发布了新的文献求助10
7秒前
顾矜应助张梦迪采纳,获得10
7秒前
7秒前
7秒前
小南发布了新的文献求助10
7秒前
8秒前
8秒前
含蓄的鹤发布了新的文献求助20
9秒前
yuyuyuan完成签到,获得积分10
10秒前
爆米花应助木心长采纳,获得10
10秒前
娜行完成签到 ,获得积分10
10秒前
caohuijun发布了新的文献求助10
11秒前
Akim应助JasonSun采纳,获得30
13秒前
17秒前
孤独梦安完成签到 ,获得积分10
17秒前
英俊完成签到,获得积分10
17秒前
乐乐应助风格化橙采纳,获得10
18秒前
喜悦发卡完成签到,获得积分10
19秒前
活力的泥猴桃完成签到 ,获得积分10
20秒前
21秒前
xinxinwen完成签到,获得积分10
21秒前
22秒前
22秒前
EMMA发布了新的文献求助10
23秒前
Cc关闭了Cc文献求助
23秒前
TTRO完成签到,获得积分10
23秒前
m_seek完成签到,获得积分10
24秒前
木心长发布了新的文献求助10
25秒前
25秒前
土二给土二的求助进行了留言
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452