(Invited) Bi-Layer Cathodes Comprising Different Active Material Sublayers Demonstrate Superior Fast Charge Capability

材料科学 阴极 电解质 电极 双层 阳极 锂(药物) 集电器 电流密度 氧化钴 复合材料 氧化物 电气工程 化学 冶金 物理化学 内分泌学 工程类 物理 医学 量子力学 生物化学
作者
Samuel Wheeler,E. C. Tredenick,Yige Sun,Patrick S. Grant
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (2): 477-477
标识
DOI:10.1149/ma2023-012477mtgabs
摘要

Sluggish electrolyte transport properties result in a tradeoff between energy density and rate capability in lithium-ion batteries. To increase energy density, electrodes are made thicker and less porous. However, once thick enough, lithium transport in the electrolyte becomes the rate limiting process, and capacities at elevated C rates are reduced as a result of underutilisation of active material near the current collector. Strategies have been proposed to overcome these limitations, including pore engineering to reduce through-plane tortuosity, to varying degrees of success. We introduce bilayer cathodes that aim to improve the rate performance of thick electrodes by controlling the through-thickness charging rate. The bilayer cathode structure is comprised of two discrete sublayers containing the active materials lithium iron phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC). Due to LFP and NMC having open-circuit voltage (OCV) profiles in different voltage windows, the through-thickness charging rate is dependent on the location of the two active materials. The bilayer electrodes are manufactured by multi-pass doctor blade coating and, in principle, could also be produced using twin-slot dies which would require only a minor modification to the current commercial manufacturing methods. The electrochemical performance of the bilayer cathodes are compared with a blended electrode (single layer containing intimately mixed LFP and NMC) and a uniform NMC electrode, all at constant areal capacity (4.5 mAh cm -2 ) and porosity (30%). We report significant differences in voltage profiles when charging from 0% state of charge as well as intermediate (e.g. 50%) states of charge in electrodes containing the same mass fraction of LFP and NMC, demonstrating that the location of the active material through the electrode thickness impacts behaviour. Moreover, the best performing bilayer electrode structure (LFP layer adjacent to the current collector, NMC layer on top of the LFP layer) outperforms the uniform NMC electrode in fast charge tests. At 3C, the best performing bilayer cathode maintains 84% of its capacity whilst the uniform NMC electrode maintains only 53%. In discharge, the same electrodes both maintain approximately 52% capacity at 3C, demonstrating the anisotropic charging/discharge performance introduced by the bilayer structure. An understanding of the through-thickness charging rate, and distribution of state of charge, throughout charging is required to explain why the bilayer cathode outperforms a conventional uniform cathode. In uniform electrodes, with the same active material through the thickness of the electrode, a gradient in state of charge is formed due to a gradient in resistance to charge through the electrode thickness. This is due to much higher ionic resistance within the electrolyte than the electronic resistance within the composite electrode. In thick electrodes this effect is pronounced enough so that at the end of charge there is far greater underutilisation of active material in the part of the electrode nearest the current collector. In the bilayer cathode structure, by placing active material with a lower OCV near the current collector, we can, somewhat counterintuitively, achieve much more even through-thickness charging compared to uniform electrodes, minimising underutilisation of active material near the current collector and increasing rate performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的哈密瓜完成签到,获得积分10
1秒前
JamesPei应助zhang采纳,获得10
1秒前
Simmer完成签到,获得积分10
2秒前
5秒前
wang完成签到,获得积分10
6秒前
neao完成签到,获得积分10
6秒前
第二个账号完成签到 ,获得积分10
7秒前
成就觅翠发布了新的文献求助10
7秒前
7秒前
刘小小123发布了新的文献求助10
9秒前
20231125完成签到,获得积分10
10秒前
想毕业的小橙子完成签到,获得积分10
16秒前
俊秀的半雪完成签到,获得积分10
16秒前
ren完成签到 ,获得积分10
17秒前
17秒前
淡淡代玉发布了新的文献求助20
19秒前
CipherSage应助萧一采纳,获得10
19秒前
Rollin完成签到 ,获得积分10
20秒前
科目三应助Lebranium采纳,获得10
20秒前
爆米花应助daodao采纳,获得10
21秒前
22秒前
hms完成签到 ,获得积分10
24秒前
psychedeng完成签到,获得积分10
25秒前
25秒前
25秒前
林白生完成签到,获得积分10
26秒前
刘小小123完成签到,获得积分20
26秒前
zm发布了新的文献求助10
28秒前
愉快凡旋发布了新的文献求助10
28秒前
28秒前
29秒前
30秒前
萱萱发布了新的文献求助10
30秒前
32秒前
加厚加大完成签到 ,获得积分10
32秒前
Lebranium发布了新的文献求助10
33秒前
青羽落霞完成签到 ,获得积分10
33秒前
传统的孤丝完成签到 ,获得积分10
34秒前
iOhyeye23发布了新的文献求助10
34秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997537
求助须知:如何正确求助?哪些是违规求助? 3537062
关于积分的说明 11270787
捐赠科研通 3276299
什么是DOI,文献DOI怎么找? 1806863
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975