(Invited) Bi-Layer Cathodes Comprising Different Active Material Sublayers Demonstrate Superior Fast Charge Capability

材料科学 阴极 电解质 电极 双层 阳极 锂(药物) 集电器 电流密度 氧化钴 复合材料 氧化物 电气工程 化学 冶金 物理化学 内分泌学 工程类 物理 医学 量子力学 生物化学
作者
Samuel Wheeler,E. C. Tredenick,Yige Sun,Patrick S. Grant
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (2): 477-477
标识
DOI:10.1149/ma2023-012477mtgabs
摘要

Sluggish electrolyte transport properties result in a tradeoff between energy density and rate capability in lithium-ion batteries. To increase energy density, electrodes are made thicker and less porous. However, once thick enough, lithium transport in the electrolyte becomes the rate limiting process, and capacities at elevated C rates are reduced as a result of underutilisation of active material near the current collector. Strategies have been proposed to overcome these limitations, including pore engineering to reduce through-plane tortuosity, to varying degrees of success. We introduce bilayer cathodes that aim to improve the rate performance of thick electrodes by controlling the through-thickness charging rate. The bilayer cathode structure is comprised of two discrete sublayers containing the active materials lithium iron phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC). Due to LFP and NMC having open-circuit voltage (OCV) profiles in different voltage windows, the through-thickness charging rate is dependent on the location of the two active materials. The bilayer electrodes are manufactured by multi-pass doctor blade coating and, in principle, could also be produced using twin-slot dies which would require only a minor modification to the current commercial manufacturing methods. The electrochemical performance of the bilayer cathodes are compared with a blended electrode (single layer containing intimately mixed LFP and NMC) and a uniform NMC electrode, all at constant areal capacity (4.5 mAh cm -2 ) and porosity (30%). We report significant differences in voltage profiles when charging from 0% state of charge as well as intermediate (e.g. 50%) states of charge in electrodes containing the same mass fraction of LFP and NMC, demonstrating that the location of the active material through the electrode thickness impacts behaviour. Moreover, the best performing bilayer electrode structure (LFP layer adjacent to the current collector, NMC layer on top of the LFP layer) outperforms the uniform NMC electrode in fast charge tests. At 3C, the best performing bilayer cathode maintains 84% of its capacity whilst the uniform NMC electrode maintains only 53%. In discharge, the same electrodes both maintain approximately 52% capacity at 3C, demonstrating the anisotropic charging/discharge performance introduced by the bilayer structure. An understanding of the through-thickness charging rate, and distribution of state of charge, throughout charging is required to explain why the bilayer cathode outperforms a conventional uniform cathode. In uniform electrodes, with the same active material through the thickness of the electrode, a gradient in state of charge is formed due to a gradient in resistance to charge through the electrode thickness. This is due to much higher ionic resistance within the electrolyte than the electronic resistance within the composite electrode. In thick electrodes this effect is pronounced enough so that at the end of charge there is far greater underutilisation of active material in the part of the electrode nearest the current collector. In the bilayer cathode structure, by placing active material with a lower OCV near the current collector, we can, somewhat counterintuitively, achieve much more even through-thickness charging compared to uniform electrodes, minimising underutilisation of active material near the current collector and increasing rate performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助cxxx采纳,获得10
刚刚
刚刚
1秒前
1秒前
虚拟的若完成签到,获得积分10
1秒前
香蕉觅云应助大气凝云采纳,获得10
2秒前
卡乐李发布了新的文献求助10
2秒前
2秒前
JJ发布了新的文献求助10
2秒前
上官若男应助朴素珩采纳,获得10
3秒前
4秒前
wwwww发布了新的文献求助10
4秒前
4秒前
千羽汐完成签到,获得积分20
4秒前
5秒前
两张发布了新的文献求助10
6秒前
严天飞发布了新的文献求助10
7秒前
tyj发布了新的文献求助10
7秒前
7秒前
ZZZkn发布了新的文献求助10
9秒前
lixiao1912完成签到,获得积分10
10秒前
10秒前
cc发布了新的文献求助10
11秒前
被风吹过的路完成签到,获得积分10
11秒前
科目三应助Dec采纳,获得10
11秒前
SciGPT应助李李采纳,获得10
12秒前
找文献呢发布了新的文献求助10
12秒前
12秒前
奇点完成签到,获得积分10
12秒前
ctc完成签到,获得积分10
13秒前
lyman完成签到,获得积分10
14秒前
gxffxf完成签到,获得积分10
14秒前
研友_VZG7GZ应助研友_R2D2采纳,获得10
15秒前
wwwww完成签到,获得积分10
16秒前
cgr发布了新的文献求助10
16秒前
yznfly应助夏天采纳,获得100
17秒前
cxxx发布了新的文献求助10
17秒前
着急的小松鼠完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721