POS-GIFT: A geometric and intensity-invariant feature transformation for multimodal images

人工智能 计算机科学 模式识别(心理学) 方向(向量空间) 计算机视觉 特征(语言学) 几何变换 特征向量 规范(哲学) 数学 图像(数学) 几何学 政治学 语言学 哲学 法学
作者
Zhuolu Hou,Yuxuan Liu,Li Zhang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102027-102027 被引量:21
标识
DOI:10.1016/j.inffus.2023.102027
摘要

Multimodal image matching suffers from severe geometric and nonlinear intensity distortion (NID). Towards this problem, we propose a multimodal image matching algorithm based on multi-orientation filtering results, called position-orientation-scale guided geometric and intensity-invariant feature transformation (POS-GIFT). First, we design a multi-layer circular point sampling pattern to effectively capture the local image structure. Then, we propose a novel feature descriptor that can work robustly across rotational differences in [0°, 360°) in the presence of NID. Specifically, we (1) integrate the multi-orientation filtering response in the local neighborhood with a Gaussian weight to form the feature of each sampled point (GFP), (2) build feature vectors for each orientation by concatenating the features of points grouped by orientation, (3) estimate the primary orientation by finding the feature vector with the largest norm which is constructed in the previous step, (4) modify the order of elements of GFP, and (5) finally concatenate the features of all sampled points in a certain order to form the complete feature descriptor. At last, we propose a position-orientation-scale guided inlier recovery strategy (POS) by integrating the global position, orientation, and scale information to further improve the matching performance, especially the number and distribution of correct matches in texture-less and complex areas. Experimental results on various multimodal datasets from remote sensing, medical, and computer vision imaging domains show that POS-GIFT outperforms eight state-of-the-art multimodal image feature matching algorithms which are five handcrafted-based methods, OS-SIFT, PSO-SIFT, LGHD, RIFT, and LNIFT, and three learning-based methods RedFeat, MatchFormer, and SemLA by several times in terms of correct matches while improving the root-mean-square error to around 1 pixel. Our implementation is available at https://github.com/Zhuolu-Hou/POS-GIFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
hnu301完成签到,获得积分10
1秒前
英姑应助冷酷鱼采纳,获得10
2秒前
2秒前
屿落完成签到,获得积分10
2秒前
昏睡的蟠桃应助zzz采纳,获得100
2秒前
量子星尘发布了新的文献求助10
4秒前
恋雅颖月应助幸福大白采纳,获得10
4秒前
wh完成签到,获得积分10
4秒前
余淮完成签到,获得积分10
5秒前
平淡的初翠完成签到,获得积分10
5秒前
快乐一江发布了新的文献求助10
6秒前
邱型程应助屿落采纳,获得20
7秒前
鹤鸣完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
天真的高山完成签到,获得积分10
13秒前
善良海云完成签到,获得积分10
15秒前
ANG发布了新的文献求助10
15秒前
从容梦旋完成签到,获得积分10
17秒前
18秒前
酷波er应助liuyunhao7207采纳,获得10
18秒前
人生如梦应助健忘跳跳糖采纳,获得10
19秒前
19秒前
sihanzhiyu发布了新的文献求助10
19秒前
汉堡包应助dpp采纳,获得10
19秒前
在水一方应助hnu301采纳,获得10
19秒前
jbhb完成签到,获得积分20
20秒前
Colossus完成签到,获得积分10
20秒前
20秒前
22秒前
王哒哒完成签到,获得积分10
22秒前
英姑应助Fury采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174