POS-GIFT: A geometric and intensity-invariant feature transformation for multimodal images

人工智能 计算机科学 模式识别(心理学) 方向(向量空间) 计算机视觉 特征(语言学) 几何变换 特征向量 规范(哲学) 数学 图像(数学) 几何学 政治学 语言学 哲学 法学
作者
Zhuolu Hou,Yuxuan Liu,Li Zhang
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102027-102027 被引量:14
标识
DOI:10.1016/j.inffus.2023.102027
摘要

Multimodal image matching suffers from severe geometric and nonlinear intensity distortion (NID). Towards this problem, we propose a multimodal image matching algorithm based on multi-orientation filtering results, called position-orientation-scale guided geometric and intensity-invariant feature transformation (POS-GIFT). First, we design a multi-layer circular point sampling pattern to effectively capture the local image structure. Then, we propose a novel feature descriptor that can work robustly across rotational differences in [0°, 360°) in the presence of NID. Specifically, we (1) integrate the multi-orientation filtering response in the local neighborhood with a Gaussian weight to form the feature of each sampled point (GFP), (2) build feature vectors for each orientation by concatenating the features of points grouped by orientation, (3) estimate the primary orientation by finding the feature vector with the largest norm which is constructed in the previous step, (4) modify the order of elements of GFP, and (5) finally concatenate the features of all sampled points in a certain order to form the complete feature descriptor. At last, we propose a position-orientation-scale guided inlier recovery strategy (POS) by integrating the global position, orientation, and scale information to further improve the matching performance, especially the number and distribution of correct matches in texture-less and complex areas. Experimental results on various multimodal datasets from remote sensing, medical, and computer vision imaging domains show that POS-GIFT outperforms eight state-of-the-art multimodal image feature matching algorithms which are five handcrafted-based methods, OS-SIFT, PSO-SIFT, LGHD, RIFT, and LNIFT, and three learning-based methods RedFeat, MatchFormer, and SemLA by several times in terms of correct matches while improving the root-mean-square error to around 1 pixel. Our implementation is available at https://github.com/Zhuolu-Hou/POS-GIFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夷陵老祖胃无限完成签到,获得积分10
1秒前
科研通AI5应助windy7采纳,获得10
2秒前
隐形曼青应助wenxiang采纳,获得10
2秒前
luwenxuan完成签到,获得积分10
3秒前
平常的雁凡完成签到,获得积分10
4秒前
松鼠15111完成签到,获得积分10
6秒前
rio完成签到 ,获得积分10
6秒前
drizzling完成签到,获得积分10
7秒前
chen完成签到,获得积分10
9秒前
高贵的晓筠完成签到 ,获得积分10
9秒前
leo完成签到 ,获得积分10
9秒前
10秒前
10秒前
老迟到的幼枫完成签到,获得积分10
13秒前
研友_ZzrWKZ完成签到 ,获得积分10
13秒前
Once完成签到,获得积分10
15秒前
windy7发布了新的文献求助10
15秒前
可爱的函函应助zzb采纳,获得10
15秒前
星海殇完成签到 ,获得积分0
16秒前
18秒前
养猪大户完成签到 ,获得积分10
18秒前
糖豆子完成签到,获得积分10
19秒前
求助应助Edward采纳,获得10
19秒前
机智念芹完成签到 ,获得积分10
19秒前
longmad完成签到,获得积分10
19秒前
ZS完成签到,获得积分10
19秒前
龙舞星完成签到,获得积分10
20秒前
儒雅飞飞完成签到 ,获得积分10
21秒前
小胖子完成签到 ,获得积分10
21秒前
紫金之巅完成签到 ,获得积分10
22秒前
Haucicy完成签到 ,获得积分10
23秒前
平淡的翅膀完成签到 ,获得积分10
23秒前
23秒前
yycc完成签到,获得积分10
23秒前
加油杨完成签到 ,获得积分10
24秒前
健壮的花瓣完成签到 ,获得积分10
25秒前
zzb发布了新的文献求助10
26秒前
科研通AI5应助李骞采纳,获得10
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580551
求助须知:如何正确求助?哪些是违规求助? 3150024
关于积分的说明 9479749
捐赠科研通 2851567
什么是DOI,文献DOI怎么找? 1567864
邀请新用户注册赠送积分活动 734264
科研通“疑难数据库(出版商)”最低求助积分说明 720579