发光杆菌属
生物
微生物学
发光光杆线虫
操纵子
毒力
昆虫
生物化学
植物
基因
大肠杆菌
作者
Arpit Prashar,Omkar U. Kinkar,Ashwani Kumar,Ashok B. Hadapad,Ravindra D. Makde,Ramesh S. Hire
标识
DOI:10.1016/j.ibmb.2023.104014
摘要
PirAB binary toxin from Photorhabdus is toxic to the larvae of dipteran and lepidopteran insect pests. However, the 3-D structures and their toxicity mechanism are not yet fully understood. Here we report the crystal structures of PirA and PirB proteins from Photorhabdus akhurstii subsp. akhurstii K-1 at 1.6 and 2.1 Å, respectively. PirA comprises of eight β-strands depicting jelly-roll topology while PirB folds into two distinct domains, an N-terminal domain (PirB-N) made up of seven α-helices and a C-terminal domain (PirB-C) consists of ten β-strands. Despite the low sequence identity, PirA adopts similar architecture as domain III and PirB shared similar architecture as domain I/II of the Cry δ-endotoxin of Bacillus thuringiensis, respectively. However, PirA shows significant structural variations as compared to domain III of lepidopteran and dipteran specific Cry toxins (Cry1Aa and Cry11Ba) suggesting its role in virulence among range of insect pests and hence, in receptor binding. High structural resemblance between PirB-N and domain I of Cry toxin raises the possibility that the putative PirAB binary toxin may mimic the toxicity mechanism of the Cry protein, particularly its ability to perform pore formation. The mixture of independently purified PirA and PirB proteins are not toxic to insects. However, PirA-PirB protein complex purified from expression of pir operon with non-coding Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences found toxic to Galleria mellonella larvae with LD50 value of 1.62 μg/larva. This suggests that toxic conformation of PirA and PirB are achieved in-vivo with the help of ERIC sequences.
科研通智能强力驱动
Strongly Powered by AbleSci AI