A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery

叶面积指数 多光谱图像 天蓬 环境科学 精准农业 遥感 数学 计算机科学 人工智能 农学 植物 地理 生物 农业 考古
作者
Zhenqi Liao,Yulong Dai,Han Wang,Quirine M. Ketterings,Jun-sheng LU,Fu-cang ZHANG,Zhi-jun LI,Junliang Fan
出处
期刊:Journal of Integrative Agriculture [Elsevier]
卷期号:22 (7): 2248-2270
标识
DOI:10.1016/j.jia.2023.02.022
摘要

The accurate and rapid estimation of canopy nitrogen content (CNC) in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture. However, the determination of CNC from field sampling data for leaf area index (LAI), canopy photosynthetic pigments (CPP; including chlorophyll a, chlorophyll b and carotenoids) and leaf nitrogen concentration (LNC) can be time-consuming and costly. Here we evaluated the use of high-precision unmanned aerial vehicle (UAV) multispectral imagery for estimating the LAI, CPP and CNC of winter wheat over the whole growth period. A total of 23 spectral features (SFs; five original spectrum bands, 17 vegetation indices and the gray scale of the RGB image) and eight texture features (TFs; contrast, entropy, variance, mean, homogeneity, dissimilarity, second moment, and correlation) were selected as inputs for the models. Six machine learning methods, i.e., multiple stepwise regression (MSR), support vector regression (SVR), gradient boosting decision tree (GBDT), Gaussian process regression (GPR), back propagation neural network (BPNN) and radial basis function neural network (RBFNN), were compared for the retrieval of winter wheat LAI, CPP and CNC values, and a double-layer model was proposed for estimating CNC based on LAI and CPP. The results showed that the inversion of winter wheat LAI, CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs. The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI, CPP and CNC. The proposed double-layer models (R2=0.67-0.89, RMSE=13.63-23.71 mg g−1, MAE=10.75-17.59 mg g−1) performed better than the direct inversion models (R2=0.61-0.80, RMSE=18.01-25.12 mg g−1, MAE=12.96-18.88 mg g−1) in estimating winter wheat CNC. The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs (R2=0.89, RMSE=13.63 mg g−1, MAE=10.75 mg g−1). The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴海燕发布了新的文献求助10
刚刚
1秒前
平淡依玉发布了新的文献求助10
1秒前
genuine完成签到,获得积分10
1秒前
1秒前
2秒前
jingjing完成签到,获得积分10
2秒前
2秒前
mrpy应助养乐多采纳,获得10
2秒前
3秒前
4秒前
共享精神应助Certainty橙子采纳,获得10
4秒前
算命先生发布了新的文献求助10
4秒前
4秒前
XiaTong完成签到 ,获得积分10
5秒前
5秒前
cy完成签到,获得积分10
5秒前
5秒前
nannan关注了科研通微信公众号
5秒前
6秒前
努力搬砖努力干完成签到,获得积分10
6秒前
7秒前
脑洞疼应助HH采纳,获得10
7秒前
天天快乐应助Aurora.H采纳,获得10
7秒前
珍妮发布了新的文献求助10
7秒前
小二郎应助AY采纳,获得10
7秒前
怕黑海冬发布了新的文献求助10
7秒前
超人无敌完成签到,获得积分10
7秒前
8秒前
麦麦发布了新的文献求助10
8秒前
思源应助蓓蓓0303采纳,获得10
9秒前
haha发布了新的文献求助10
9秒前
小蘑菇应助李李李er采纳,获得10
9秒前
9秒前
kian发布了新的文献求助10
9秒前
孙笑川发布了新的文献求助10
10秒前
得己发布了新的文献求助10
10秒前
ABLAT发布了新的文献求助10
10秒前
研友_莫笑旋完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853