A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery

叶面积指数 多光谱图像 天蓬 环境科学 精准农业 遥感 数学 计算机科学 人工智能 农学 植物 地理 生物 考古 农业
作者
Zhenqi Liao,Yulong Dai,Han Wang,Quirine M. Ketterings,Jun-sheng LU,Fu-cang ZHANG,Zhi-jun LI,Junliang Fan
出处
期刊:Journal of Integrative Agriculture [Elsevier]
卷期号:22 (7): 2248-2270
标识
DOI:10.1016/j.jia.2023.02.022
摘要

The accurate and rapid estimation of canopy nitrogen content (CNC) in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture. However, the determination of CNC from field sampling data for leaf area index (LAI), canopy photosynthetic pigments (CPP; including chlorophyll a, chlorophyll b and carotenoids) and leaf nitrogen concentration (LNC) can be time-consuming and costly. Here we evaluated the use of high-precision unmanned aerial vehicle (UAV) multispectral imagery for estimating the LAI, CPP and CNC of winter wheat over the whole growth period. A total of 23 spectral features (SFs; five original spectrum bands, 17 vegetation indices and the gray scale of the RGB image) and eight texture features (TFs; contrast, entropy, variance, mean, homogeneity, dissimilarity, second moment, and correlation) were selected as inputs for the models. Six machine learning methods, i.e., multiple stepwise regression (MSR), support vector regression (SVR), gradient boosting decision tree (GBDT), Gaussian process regression (GPR), back propagation neural network (BPNN) and radial basis function neural network (RBFNN), were compared for the retrieval of winter wheat LAI, CPP and CNC values, and a double-layer model was proposed for estimating CNC based on LAI and CPP. The results showed that the inversion of winter wheat LAI, CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs. The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI, CPP and CNC. The proposed double-layer models (R2=0.67-0.89, RMSE=13.63-23.71 mg g−1, MAE=10.75-17.59 mg g−1) performed better than the direct inversion models (R2=0.61-0.80, RMSE=18.01-25.12 mg g−1, MAE=12.96-18.88 mg g−1) in estimating winter wheat CNC. The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs (R2=0.89, RMSE=13.63 mg g−1, MAE=10.75 mg g−1). The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NPC应助lucky采纳,获得30
刚刚
orixero应助可爱凯采纳,获得10
3秒前
4秒前
茶包发布了新的文献求助30
4秒前
Olivia发布了新的文献求助10
6秒前
7秒前
QL完成签到 ,获得积分10
7秒前
Orange应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得20
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
华仔应助冬天的太阳采纳,获得10
12秒前
追寻紫安应助一条大盒盒采纳,获得10
12秒前
www完成签到,获得积分10
13秒前
14秒前
Hypnos关注了科研通微信公众号
16秒前
justin发布了新的文献求助10
17秒前
zz发布了新的文献求助20
18秒前
莎莎完成签到 ,获得积分10
19秒前
19秒前
Nakacoke77完成签到,获得积分10
20秒前
夏青荷发布了新的文献求助10
21秒前
罐罐儿完成签到,获得积分0
21秒前
22秒前
22秒前
25秒前
开心市民小刘完成签到,获得积分10
26秒前
李先生完成签到,获得积分20
29秒前
29秒前
bkagyin应助路过的风景采纳,获得10
30秒前
31秒前
可爱的函函应助likes采纳,获得20
31秒前
光催化完成签到 ,获得积分10
31秒前
咖可乐发布了新的文献求助10
31秒前
酷波er应助潇然采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136196
求助须知:如何正确求助?哪些是违规求助? 2787119
关于积分的说明 7780500
捐赠科研通 2443236
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870