A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery

叶面积指数 多光谱图像 天蓬 环境科学 精准农业 遥感 数学 计算机科学 人工智能 农学 植物 地理 生物 农业 考古
作者
Zhenqi Liao,Yulong Dai,Han Wang,Quirine M. Ketterings,Jun-sheng LU,Fu-cang ZHANG,Zhi-jun LI,Junliang Fan
出处
期刊:Journal of Integrative Agriculture [Elsevier BV]
卷期号:22 (7): 2248-2270
标识
DOI:10.1016/j.jia.2023.02.022
摘要

The accurate and rapid estimation of canopy nitrogen content (CNC) in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture. However, the determination of CNC from field sampling data for leaf area index (LAI), canopy photosynthetic pigments (CPP; including chlorophyll a, chlorophyll b and carotenoids) and leaf nitrogen concentration (LNC) can be time-consuming and costly. Here we evaluated the use of high-precision unmanned aerial vehicle (UAV) multispectral imagery for estimating the LAI, CPP and CNC of winter wheat over the whole growth period. A total of 23 spectral features (SFs; five original spectrum bands, 17 vegetation indices and the gray scale of the RGB image) and eight texture features (TFs; contrast, entropy, variance, mean, homogeneity, dissimilarity, second moment, and correlation) were selected as inputs for the models. Six machine learning methods, i.e., multiple stepwise regression (MSR), support vector regression (SVR), gradient boosting decision tree (GBDT), Gaussian process regression (GPR), back propagation neural network (BPNN) and radial basis function neural network (RBFNN), were compared for the retrieval of winter wheat LAI, CPP and CNC values, and a double-layer model was proposed for estimating CNC based on LAI and CPP. The results showed that the inversion of winter wheat LAI, CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs. The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI, CPP and CNC. The proposed double-layer models (R2=0.67-0.89, RMSE=13.63-23.71 mg g−1, MAE=10.75-17.59 mg g−1) performed better than the direct inversion models (R2=0.61-0.80, RMSE=18.01-25.12 mg g−1, MAE=12.96-18.88 mg g−1) in estimating winter wheat CNC. The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs (R2=0.89, RMSE=13.63 mg g−1, MAE=10.75 mg g−1). The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让夏云完成签到,获得积分10
1秒前
donzang完成签到,获得积分10
1秒前
1秒前
风屿完成签到,获得积分10
1秒前
脑洞疼应助忧心的不言采纳,获得10
1秒前
小青椒应助wqr采纳,获得30
2秒前
周老八发布了新的文献求助10
3秒前
彩色的谷兰完成签到,获得积分10
3秒前
4秒前
球闪完成签到,获得积分10
4秒前
adeno发布了新的文献求助10
5秒前
领导范儿应助小易采纳,获得10
5秒前
7秒前
好好学习完成签到,获得积分10
8秒前
王钟萱完成签到,获得积分10
8秒前
结实白柏发布了新的文献求助10
8秒前
FashionBoy应助拼搏的从雪采纳,获得10
8秒前
MelonWong发布了新的文献求助10
9秒前
心安完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
13秒前
1111完成签到,获得积分20
13秒前
斯文败类应助homeland采纳,获得10
14秒前
nan完成签到,获得积分10
14秒前
baidu发布了新的文献求助10
15秒前
慕青应助Viper3采纳,获得30
16秒前
思源应助忧心的襄采纳,获得10
17秒前
252525发布了新的文献求助10
17秒前
18秒前
20秒前
深情安青应助结实白柏采纳,获得30
21秒前
刘泗青应助杨洋采纳,获得10
21秒前
22秒前
22秒前
23秒前
小马甲应助叮当采纳,获得10
25秒前
科研通AI5应助科研临时工采纳,获得10
26秒前
赵丽媛发布了新的文献求助10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215340
求助须知:如何正确求助?哪些是违规求助? 4390475
关于积分的说明 13670085
捐赠科研通 4252359
什么是DOI,文献DOI怎么找? 2333057
邀请新用户注册赠送积分活动 1330667
关于科研通互助平台的介绍 1284488