A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery

叶面积指数 多光谱图像 天蓬 环境科学 精准农业 遥感 数学 计算机科学 人工智能 农学 植物 地理 生物 农业 考古
作者
Zhenqi Liao,Yulong Dai,Han Wang,Quirine M. Ketterings,Jun-sheng LU,Fu-cang ZHANG,Zhi-jun LI,Junliang Fan
出处
期刊:Journal of Integrative Agriculture [Elsevier]
卷期号:22 (7): 2248-2270
标识
DOI:10.1016/j.jia.2023.02.022
摘要

The accurate and rapid estimation of canopy nitrogen content (CNC) in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture. However, the determination of CNC from field sampling data for leaf area index (LAI), canopy photosynthetic pigments (CPP; including chlorophyll a, chlorophyll b and carotenoids) and leaf nitrogen concentration (LNC) can be time-consuming and costly. Here we evaluated the use of high-precision unmanned aerial vehicle (UAV) multispectral imagery for estimating the LAI, CPP and CNC of winter wheat over the whole growth period. A total of 23 spectral features (SFs; five original spectrum bands, 17 vegetation indices and the gray scale of the RGB image) and eight texture features (TFs; contrast, entropy, variance, mean, homogeneity, dissimilarity, second moment, and correlation) were selected as inputs for the models. Six machine learning methods, i.e., multiple stepwise regression (MSR), support vector regression (SVR), gradient boosting decision tree (GBDT), Gaussian process regression (GPR), back propagation neural network (BPNN) and radial basis function neural network (RBFNN), were compared for the retrieval of winter wheat LAI, CPP and CNC values, and a double-layer model was proposed for estimating CNC based on LAI and CPP. The results showed that the inversion of winter wheat LAI, CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs. The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI, CPP and CNC. The proposed double-layer models (R2=0.67-0.89, RMSE=13.63-23.71 mg g−1, MAE=10.75-17.59 mg g−1) performed better than the direct inversion models (R2=0.61-0.80, RMSE=18.01-25.12 mg g−1, MAE=12.96-18.88 mg g−1) in estimating winter wheat CNC. The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs (R2=0.89, RMSE=13.63 mg g−1, MAE=10.75 mg g−1). The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐唐发布了新的文献求助10
刚刚
刚刚
zheng完成签到 ,获得积分10
1秒前
1秒前
1秒前
科研通AI6应助林二车娜姆采纳,获得10
2秒前
xxz完成签到,获得积分10
2秒前
爱炸鸡也爱烧烤完成签到,获得积分10
3秒前
xpqiu发布了新的文献求助30
3秒前
徐峰完成签到 ,获得积分10
5秒前
xdm完成签到,获得积分10
5秒前
英勇安筠完成签到,获得积分10
6秒前
cc发布了新的文献求助10
6秒前
6秒前
XIEQ发布了新的文献求助10
6秒前
默默的XJ完成签到,获得积分10
7秒前
Tom完成签到,获得积分10
7秒前
科研通AI6应助yyy采纳,获得10
7秒前
yo完成签到 ,获得积分10
8秒前
10秒前
亦尘完成签到,获得积分10
10秒前
Simonn29完成签到,获得积分10
11秒前
16秒前
16秒前
上官若男应助烧鸭饭采纳,获得10
18秒前
pancake发布了新的文献求助50
19秒前
深情安青应助林林小烨采纳,获得10
20秒前
桐桐应助Lilies采纳,获得10
20秒前
顾矜应助哲别采纳,获得10
22秒前
文迪完成签到,获得积分10
22秒前
cc完成签到,获得积分20
22秒前
23秒前
26秒前
27秒前
28秒前
oo完成签到,获得积分10
28秒前
28秒前
王肖宁完成签到,获得积分10
29秒前
852应助yuyu采纳,获得10
29秒前
小嘉贞发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866