DMU-Net: A Dual-Stream Multi-Scale U-Net Network Using Multi-Dimensional Spatial Information for Urban Building Extraction

RGB颜色模型 计算机科学 网(多面体) 多光谱图像 遥感 人工智能 比例(比率) 模式识别(心理学) 计算机视觉 数学 地理 地图学 几何学
作者
Peihang Li,Zuoliang Sun,Guangyao Duan,Dongchuan Wang,Qingyan Meng,Yunxiao Sun
出处
期刊:Sensors [MDPI AG]
卷期号:23 (4): 1991-1991 被引量:2
标识
DOI:10.3390/s23041991
摘要

Automatically extracting urban buildings from remote sensing images has essential application value, such as urban planning and management. Gaofen-7 (GF-7) provides multi-perspective and multispectral satellite images, which can obtain three-dimensional spatial information. Previous studies on building extraction often ignored information outside the red–green–blue (RGB) bands. To utilize the multi-dimensional spatial information of GF-7, we propose a dual-stream multi-scale network (DMU-Net) for urban building extraction. DMU-Net is based on U-Net, and the encoder is designed as the dual-stream CNN structure, which inputs RGB images, near-infrared (NIR), and normalized digital surface model (nDSM) fusion images, respectively. In addition, the improved FPN (IFPN) structure is integrated into the decoder. It enables DMU-Net to fuse different band features and multi-scale features of images effectively. This new method is tested with the study area within the Fourth Ring Road in Beijing, and the conclusions are as follows: (1) Our network achieves an overall accuracy (OA) of 96.16% and an intersection-over-union (IoU) of 84.49% for the GF-7 self-annotated building dataset, outperforms other state-of-the-art (SOTA) models. (2) Three-dimensional information significantly improved the accuracy of building extraction. Compared with RGB and RGB + NIR, the IoU increased by 7.61% and 3.19% after using nDSM data, respectively. (3) DMU-Net is superior to SMU-Net, DU-Net, and IEU-Net. The IoU is improved by 0.74%, 0.55%, and 1.65%, respectively, indicating the superiority of the dual-stream CNN structure and the IFPN structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd完成签到,获得积分10
刚刚
刚刚
Lucas应助研友_Z7QedL采纳,获得10
1秒前
1秒前
666发布了新的文献求助10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
爱笑的若雁完成签到,获得积分10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Hiccupsssss完成签到,获得积分10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
3秒前
田田应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
chenqiumu应助zzzshy采纳,获得30
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
852应助高志博采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
深情安青应助Later采纳,获得10
6秒前
hxpxp完成签到,获得积分10
6秒前
dd发布了新的文献求助20
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884