DMU-Net: A Dual-Stream Multi-Scale U-Net Network Using Multi-Dimensional Spatial Information for Urban Building Extraction

RGB颜色模型 计算机科学 网(多面体) 多光谱图像 遥感 人工智能 比例(比率) 模式识别(心理学) 计算机视觉 数学 地理 地图学 几何学
作者
Peihang Li,Zuoliang Sun,Guangyao Duan,Dongchuan Wang,Qingyan Meng,Yunxiao Sun
出处
期刊:Sensors [MDPI AG]
卷期号:23 (4): 1991-1991 被引量:2
标识
DOI:10.3390/s23041991
摘要

Automatically extracting urban buildings from remote sensing images has essential application value, such as urban planning and management. Gaofen-7 (GF-7) provides multi-perspective and multispectral satellite images, which can obtain three-dimensional spatial information. Previous studies on building extraction often ignored information outside the red–green–blue (RGB) bands. To utilize the multi-dimensional spatial information of GF-7, we propose a dual-stream multi-scale network (DMU-Net) for urban building extraction. DMU-Net is based on U-Net, and the encoder is designed as the dual-stream CNN structure, which inputs RGB images, near-infrared (NIR), and normalized digital surface model (nDSM) fusion images, respectively. In addition, the improved FPN (IFPN) structure is integrated into the decoder. It enables DMU-Net to fuse different band features and multi-scale features of images effectively. This new method is tested with the study area within the Fourth Ring Road in Beijing, and the conclusions are as follows: (1) Our network achieves an overall accuracy (OA) of 96.16% and an intersection-over-union (IoU) of 84.49% for the GF-7 self-annotated building dataset, outperforms other state-of-the-art (SOTA) models. (2) Three-dimensional information significantly improved the accuracy of building extraction. Compared with RGB and RGB + NIR, the IoU increased by 7.61% and 3.19% after using nDSM data, respectively. (3) DMU-Net is superior to SMU-Net, DU-Net, and IEU-Net. The IoU is improved by 0.74%, 0.55%, and 1.65%, respectively, indicating the superiority of the dual-stream CNN structure and the IFPN structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
开放如天完成签到 ,获得积分10
4秒前
KLDS BL-10完成签到 ,获得积分10
6秒前
Akim应助金秋采纳,获得10
7秒前
彭于晏应助Snoopy采纳,获得10
8秒前
小李在哪儿完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
沐风完成签到,获得积分10
12秒前
子车语雪发布了新的文献求助10
15秒前
研友_Zr24bZ发布了新的文献求助10
16秒前
雨的前世完成签到,获得积分10
20秒前
22秒前
星辰大海应助阜睿采纳,获得10
22秒前
自信南霜完成签到,获得积分20
24秒前
iamleopeng应助半山采纳,获得10
25秒前
研友_Zr24bZ完成签到,获得积分10
26秒前
tttt完成签到 ,获得积分10
27秒前
要减肥的湘云完成签到 ,获得积分10
27秒前
夜阑卧听完成签到,获得积分10
28秒前
28秒前
Jasper应助888886kn采纳,获得10
29秒前
29秒前
。。。完成签到,获得积分10
31秒前
34秒前
骆子军完成签到 ,获得积分10
34秒前
fffff发布了新的文献求助10
36秒前
Unbelievable完成签到,获得积分10
39秒前
40秒前
flow驳回了jyy应助
41秒前
41秒前
呆萌斯完成签到,获得积分10
45秒前
46秒前
888886kn发布了新的文献求助10
47秒前
微笑书双完成签到,获得积分10
47秒前
49秒前
jjlyy完成签到,获得积分10
50秒前
王九八发布了新的文献求助10
50秒前
南城以南完成签到,获得积分10
50秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266280
求助须知:如何正确求助?哪些是违规求助? 2906091
关于积分的说明 8336645
捐赠科研通 2576480
什么是DOI,文献DOI怎么找? 1400556
科研通“疑难数据库(出版商)”最低求助积分说明 654786
邀请新用户注册赠送积分活动 633661