DMU-Net: A Dual-Stream Multi-Scale U-Net Network Using Multi-Dimensional Spatial Information for Urban Building Extraction

RGB颜色模型 计算机科学 网(多面体) 多光谱图像 遥感 人工智能 比例(比率) 模式识别(心理学) 计算机视觉 数学 地理 地图学 几何学
作者
Peihang Li,Zuoliang Sun,Guangyao Duan,Dongchuan Wang,Qingyan Meng,Yunxiao Sun
出处
期刊:Sensors [MDPI AG]
卷期号:23 (4): 1991-1991 被引量:2
标识
DOI:10.3390/s23041991
摘要

Automatically extracting urban buildings from remote sensing images has essential application value, such as urban planning and management. Gaofen-7 (GF-7) provides multi-perspective and multispectral satellite images, which can obtain three-dimensional spatial information. Previous studies on building extraction often ignored information outside the red–green–blue (RGB) bands. To utilize the multi-dimensional spatial information of GF-7, we propose a dual-stream multi-scale network (DMU-Net) for urban building extraction. DMU-Net is based on U-Net, and the encoder is designed as the dual-stream CNN structure, which inputs RGB images, near-infrared (NIR), and normalized digital surface model (nDSM) fusion images, respectively. In addition, the improved FPN (IFPN) structure is integrated into the decoder. It enables DMU-Net to fuse different band features and multi-scale features of images effectively. This new method is tested with the study area within the Fourth Ring Road in Beijing, and the conclusions are as follows: (1) Our network achieves an overall accuracy (OA) of 96.16% and an intersection-over-union (IoU) of 84.49% for the GF-7 self-annotated building dataset, outperforms other state-of-the-art (SOTA) models. (2) Three-dimensional information significantly improved the accuracy of building extraction. Compared with RGB and RGB + NIR, the IoU increased by 7.61% and 3.19% after using nDSM data, respectively. (3) DMU-Net is superior to SMU-Net, DU-Net, and IEU-Net. The IoU is improved by 0.74%, 0.55%, and 1.65%, respectively, indicating the superiority of the dual-stream CNN structure and the IFPN structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
我是老大应助lili采纳,获得10
刚刚
YSSY完成签到,获得积分10
1秒前
Akim应助灰太狼大王采纳,获得30
1秒前
ruixuekuangben完成签到,获得积分0
2秒前
2秒前
豆豆完成签到,获得积分10
3秒前
烯灯发布了新的文献求助10
3秒前
SMULJL完成签到,获得积分10
4秒前
4秒前
dd发布了新的文献求助10
4秒前
4秒前
357发布了新的文献求助10
4秒前
5秒前
万能图书馆应助小鹿采纳,获得10
5秒前
段新杰发布了新的文献求助10
5秒前
王嘉彬完成签到,获得积分10
5秒前
爱吃香菜发布了新的文献求助10
5秒前
振宇完成签到,获得积分10
5秒前
柚子完成签到 ,获得积分10
5秒前
寒月如雪发布了新的文献求助10
6秒前
喵喵完成签到,获得积分10
6秒前
lezard发布了新的文献求助10
6秒前
黄浩完成签到,获得积分10
6秒前
6秒前
大个应助忠诚卫士采纳,获得10
6秒前
crazy发布了新的文献求助200
7秒前
7秒前
7秒前
熊硕完成签到,获得积分10
7秒前
盒子完成签到,获得积分20
8秒前
8秒前
余额不足完成签到,获得积分10
8秒前
9秒前
9秒前
vvvv发布了新的文献求助10
9秒前
打打应助李开心采纳,获得10
9秒前
风中白凡完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531221
求助须知:如何正确求助?哪些是违规求助? 4620098
关于积分的说明 14571528
捐赠科研通 4559596
什么是DOI,文献DOI怎么找? 2498484
邀请新用户注册赠送积分活动 1478498
关于科研通互助平台的介绍 1449953