松驰对
黎曼-希尔伯特问题
逆散射问题
数学
逆散射变换
黎曼假设
孤子
数学分析
散射
反向
反问题
纯数学
非线性系统
可积系统
物理
量子力学
几何学
边值问题
作者
Meisen Chen,Engui Fan,Jingsong He
标识
DOI:10.1016/j.chaos.2023.113209
摘要
In this paper, we present the inverse scattering transform of the discrete mKdV equation by the Riemann–Hilbert approach. By its Lax pair, we construct the Jost solution and the reflection coefficients. With these, we assume that there are higher-order zeros for the scattering coefficient a(λ), and construct the corresponding Riemann–Hilbert (RH) problem. In this vein, by the RH problem and the reconstruction formula, we obtain the multiple-pole solutions for the discrete mKdV equations. Compared with simple-pole solutions, multiple-pole solutions possess more complicated profiles.
科研通智能强力驱动
Strongly Powered by AbleSci AI