Artificial intelligence for drug discovery: Resources, methods, and applications

药物数据库 化学 药物发现 计算机科学 药品 数据科学 化学信息学 人工智能 机器学习 医学 药理学 生物信息学 生物
作者
Wei Chen,Xuesong Liu,Sanyin Zhang,Shilin Chen
出处
期刊:Molecular therapy. Nucleic acids [Elsevier]
卷期号:31: 691-702 被引量:90
标识
DOI:10.1016/j.omtn.2023.02.019
摘要

Conventional wet laboratory testing, validations, and synthetic procedures are costly and time-consuming for drug discovery. Advancements in artificial intelligence (AI) techniques have revolutionized their applications to drug discovery. Combined with accessible data resources, AI techniques are changing the landscape of drug discovery. In the past decades, a series of AI-based models have been developed for various steps of drug discovery. These models have been used as complements of conventional experiments and have accelerated the drug discovery process. In this review, we first introduced the widely used data resources in drug discovery, such as ChEMBL and DrugBank, followed by the molecular representation schemes that convert data into computer-readable formats. Meanwhile, we summarized the algorithms used to develop AI-based models for drug discovery. Subsequently, we discussed the applications of AI techniques in pharmaceutical analysis including predicting drug toxicity, drug bioactivity, and drug physicochemical property. Furthermore, we introduced the AI-based models for de novo drug design, drug-target structure prediction, drug-target interaction, and binding affinity prediction. Moreover, we also highlighted the advanced applications of AI in drug synergism/antagonism prediction and nanomedicine design. Finally, we discussed the challenges and future perspectives on the applications of AI to drug discovery. Conventional wet laboratory testing, validations, and synthetic procedures are costly and time-consuming for drug discovery. Advancements in artificial intelligence (AI) techniques have revolutionized their applications to drug discovery. Combined with accessible data resources, AI techniques are changing the landscape of drug discovery. In the past decades, a series of AI-based models have been developed for various steps of drug discovery. These models have been used as complements of conventional experiments and have accelerated the drug discovery process. In this review, we first introduced the widely used data resources in drug discovery, such as ChEMBL and DrugBank, followed by the molecular representation schemes that convert data into computer-readable formats. Meanwhile, we summarized the algorithms used to develop AI-based models for drug discovery. Subsequently, we discussed the applications of AI techniques in pharmaceutical analysis including predicting drug toxicity, drug bioactivity, and drug physicochemical property. Furthermore, we introduced the AI-based models for de novo drug design, drug-target structure prediction, drug-target interaction, and binding affinity prediction. Moreover, we also highlighted the advanced applications of AI in drug synergism/antagonism prediction and nanomedicine design. Finally, we discussed the challenges and future perspectives on the applications of AI to drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Elena完成签到 ,获得积分10
1秒前
zhu完成签到,获得积分10
1秒前
LYDC完成签到 ,获得积分10
1秒前
1秒前
orixero应助Ventus采纳,获得10
1秒前
明亮无颜发布了新的文献求助30
2秒前
小秃兄发布了新的文献求助10
3秒前
薄荷关注了科研通微信公众号
4秒前
wayhome发布了新的文献求助10
4秒前
flipped发布了新的文献求助20
6秒前
yxy发布了新的文献求助10
7秒前
华仔应助小武wwwww采纳,获得10
9秒前
非鱼鱼完成签到 ,获得积分10
10秒前
10秒前
丘比特应助wayhome采纳,获得10
10秒前
王子语完成签到,获得积分10
11秒前
小桃子完成签到,获得积分10
11秒前
爆米花应助英勇的水壶采纳,获得10
13秒前
账户已注销完成签到,获得积分0
14秒前
kaier完成签到 ,获得积分10
15秒前
你好啊发布了新的文献求助10
16秒前
迩东完成签到 ,获得积分10
18秒前
19秒前
lixc完成签到,获得积分10
22秒前
23秒前
WJ完成签到,获得积分10
24秒前
wennyzh完成签到,获得积分10
25秒前
思源应助你好啊采纳,获得10
26秒前
26秒前
叶子发布了新的文献求助10
27秒前
27秒前
yaya发布了新的文献求助10
27秒前
江宜完成签到 ,获得积分10
30秒前
paparazzi221应助科研通管家采纳,获得80
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
科研通AI2S应助薄荷采纳,获得10
31秒前
31秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043