作者
Wei Chen,Xuesong Liu,Sanyin Zhang,Shilin Chen
摘要
Conventional wet laboratory testing, validations, and synthetic procedures are costly and time-consuming for drug discovery. Advancements in artificial intelligence (AI) techniques have revolutionized their applications to drug discovery. Combined with accessible data resources, AI techniques are changing the landscape of drug discovery. In the past decades, a series of AI-based models have been developed for various steps of drug discovery. These models have been used as complements of conventional experiments and have accelerated the drug discovery process. In this review, we first introduced the widely used data resources in drug discovery, such as ChEMBL and DrugBank, followed by the molecular representation schemes that convert data into computer-readable formats. Meanwhile, we summarized the algorithms used to develop AI-based models for drug discovery. Subsequently, we discussed the applications of AI techniques in pharmaceutical analysis including predicting drug toxicity, drug bioactivity, and drug physicochemical property. Furthermore, we introduced the AI-based models for de novo drug design, drug-target structure prediction, drug-target interaction, and binding affinity prediction. Moreover, we also highlighted the advanced applications of AI in drug synergism/antagonism prediction and nanomedicine design. Finally, we discussed the challenges and future perspectives on the applications of AI to drug discovery. Conventional wet laboratory testing, validations, and synthetic procedures are costly and time-consuming for drug discovery. Advancements in artificial intelligence (AI) techniques have revolutionized their applications to drug discovery. Combined with accessible data resources, AI techniques are changing the landscape of drug discovery. In the past decades, a series of AI-based models have been developed for various steps of drug discovery. These models have been used as complements of conventional experiments and have accelerated the drug discovery process. In this review, we first introduced the widely used data resources in drug discovery, such as ChEMBL and DrugBank, followed by the molecular representation schemes that convert data into computer-readable formats. Meanwhile, we summarized the algorithms used to develop AI-based models for drug discovery. Subsequently, we discussed the applications of AI techniques in pharmaceutical analysis including predicting drug toxicity, drug bioactivity, and drug physicochemical property. Furthermore, we introduced the AI-based models for de novo drug design, drug-target structure prediction, drug-target interaction, and binding affinity prediction. Moreover, we also highlighted the advanced applications of AI in drug synergism/antagonism prediction and nanomedicine design. Finally, we discussed the challenges and future perspectives on the applications of AI to drug discovery.