纳米反应器
对映体
对映选择合成
普鲁士蓝
基质(水族馆)
化学
酶
葡萄糖氧化酶
对映体过量
分子
过氧化氢
组合化学
有机化学
电化学
催化作用
电极
物理化学
地质学
海洋学
作者
Jing Xu,Xiaoxia Jian,Junli Guo,Junjian Zhao,Jie Tang,Yue Zhao,Jingwen Xu,Zhida Gao,Yan‐Yan Song
标识
DOI:10.1016/j.cej.2023.141650
摘要
Enantiomeric identification plays a critical role in diverse fields ranging from pharmaceutics, biologics, and stereoselective synthesis to daily life. In this study, an enantioselective surface-enhanced Raman scattering (SERS) substrate was developed by integrating homochiral MIL-101(Fe) with oxidase (GOx)-mimicking Au nanoparticles (Au/Chiral-MIL-101(Fe)) for identification and quantification of chiral molecules. Using L/d-glucose (Glu) as the model enantiomers, the homochiral environment of Au/Chiral-MIL-101(Fe) exhibited selective recognition abilities for Glu enantiomers. The captured Glu was further oxidized to hydrogen peroxide (H2O2) by GOx-like activity of Au nanoparticles. The generated H2O2 molecules reduced Fe(III) nodes in MIL-101(Fe) to Fe(II) for the growth of Prussian blue (PB) on site. Benefitting from the pre-concentrated feature and confinement effect of the porous metal–organic frameworks (MOFs) structure, the Au/Chiral-MIL-101(Fe) hybrid based nanoreactors exhibited high catalytic performance for H2O2 generation and further PB growth, resulting in an excellent sensitivity for Glu quantification. The enantioselective discrimination between l-Glu and d-Glu was directly determined from the intensity of PB signals at 2150 cm−1. Using this sensing strategy, Glu enantiomers could be quantified with a limit of detection (LOD) of 0.09 µM for l-Glu and 0.08 μM for d-Glu. Owing to its enzyme-free nature and universal characteristic for the discrimination of other monosaccharide enantiomers, this design provides an attractive substrate for sensing chiral molecules by Raman technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI