A framework for estimating all-weather fine resolution soil moisture from the integration of physics-based and machine learning-based algorithms

归一化差异植被指数 遥感 环境科学 算法 图像分辨率 反照率(炼金术) 植被(病理学) 比例(比率) 气象学 气候变化 计算机科学 地理 人工智能 地图学 地质学 海洋学 艺术 病理 医学 表演艺术 艺术史
作者
Pei Leng,Zhe Yang,Qiu-Yu Yan,Guofei Shang,Xia Zhang,Xiao-Jing Han,Zhao-Liang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107673-107673 被引量:10
标识
DOI:10.1016/j.compag.2023.107673
摘要

Due to the effects of radio frequency interference and the limitations of algorithms under specific conditions, most of the currently available microwave-based soil moisture (SM) products are spatially discontinuous and have coarse spatial resolution, whereas optical observations also reveal various data gaps due to cloud contamination. Hence, the prediction of SM over invalid pixels and disaggregation from coarse to high scales are two main processes for obtaining SM at fine spatiotemporal resolution (e.g., daily/1-km). In the present study, two methods with respect to disaggregation-first or prediction-first were investigated from the synergetic use of the widely recognized European Space Agency-Climate Change Initiative (ESA-CCI) SM product and Moderate Resolution Imaging Spectroradiometer (MODIS) images over the Tibetan Plateau (TP) region. Specifically, the Disaggregation based on Physical And Theoretical scale Change (DisPATCh) algorithm and the generalized regression neural network (GRNN) were implemented in the disaggregation and prediction, respectively. In DisPATCh, spatially complete land surface temperature (LST), normalized difference vegetation index (NDVI) and digital elevation model (DEM) were provided as essential inputs to downscale the microwave-based ESA-CCI to a spatial resolution of 1 km, whereas MODIS-derived LST, NDVI, land surface albedo and DEM were considered in the GRNN prediction. Following the two methods, the daily/1-km SM dataset over a period of three years was finally estimated. Assessments with ground in-situ SM measurements over the TP region reveal an acceptable accuracy with unbiased root mean square errors of ∼ 0.06 m3/m3, indicating the potential to obtain operational daily/1-km spatially continuous SM products in future developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
香蕉觅云应助研友_祝鬼神采纳,获得10
刚刚
老金金完成签到 ,获得积分10
刚刚
杨文志完成签到,获得积分10
1秒前
1秒前
专一的青槐完成签到,获得积分10
3秒前
虚心的宛亦完成签到,获得积分10
4秒前
skmksd完成签到,获得积分10
4秒前
Angsent发布了新的文献求助10
5秒前
5秒前
zhzike发布了新的文献求助100
6秒前
结实的山菡应助Estella采纳,获得10
6秒前
hyperthermal1发布了新的文献求助30
6秒前
地精术士完成签到,获得积分10
9秒前
10秒前
xiaochao完成签到,获得积分10
10秒前
10秒前
12秒前
pennlee完成签到,获得积分10
12秒前
半柚应助chenying采纳,获得10
13秒前
13秒前
13秒前
15秒前
折磊磊发布了新的文献求助10
15秒前
15秒前
16秒前
社会主义接班人完成签到 ,获得积分10
17秒前
怕黑傲珊发布了新的文献求助20
18秒前
完美的凝蝶完成签到 ,获得积分10
20秒前
xiaoruixue完成签到,获得积分10
20秒前
pe发布了新的文献求助10
21秒前
bkagyin应助无限的平露采纳,获得10
21秒前
yb82500发布了新的文献求助10
21秒前
调皮的薯片完成签到,获得积分10
22秒前
清脆的蓝天完成签到,获得积分10
23秒前
贾世冰完成签到,获得积分20
23秒前
24秒前
科研通AI5应助赵焱峥采纳,获得10
25秒前
TheDay完成签到,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843