From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus

能源消耗 消费(社会学) 能量(信号处理) 汽车工程 电能消耗 行驶循环 节能 电能 电动汽车 计算机科学 工程类 电气工程 物理 数学 统计 热力学 社会科学 社会学 功率(物理)
作者
Sirui Nan,Ran Tu,Tiezhu Li,Jian Sun,Haibo Chen
出处
期刊:Energy [Elsevier]
卷期号:261: 125188-125188 被引量:26
标识
DOI:10.1016/j.energy.2022.125188
摘要

Accurate real-time energy consumption prediction of electric buses (EBs) is essential for bus operation and management, which can effectively mitigate the driving range anxiety while reducing the operation cost simultaneously. This paper presents a machine learning-based energy consumption prediction method for EB, which combines driving data with road characteristics data (such as road type), traffic condition (such as peak hour), and meteorology data (such as temperature). The importance of driving behavior features affecting energy consumption is quantitatively revealed by the novel Shapley additive explanation (SHAP). Given the road characteristics, traffic condition and meteorology information, a Long Short-Term Memory (LSTM) network is then used to predict driving microscopic parameters, including speed, acceleration, gas pedal position and brake pedal position. Finally, the instantaneous electricity consumption is predicted using an Extreme Gradient Boosting (XGBoost) model based on the predicted values from the LSTM. The results show that the proposed LSTM-XGBoost model with accurate time series prediction and regression is powerful for efficiently fitting the complex volatility of energy consumption. Moreover, the proposed model chain outperforms other model combinations (such as artificial neural networks and conventional regression methods) in terms of root mean squared error (RMSE = 0.079), mean absolute error (MAE = 0.086) and R-square ( R 2 = 0.814). • A novel energy consumption prediction framework for electric buses is proposed. • The relationship between the energy usage and driving behavior is analyzed. • The time-series driving behavior prediction is integrated in the framework. • An LSTM-XGBoost model is developed to predict short-term energy consumption. • The LSTM-XGBoost model outperforms other prediction models by up to 50%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助萧白竹采纳,获得10
1秒前
共享精神应助萧白竹采纳,获得10
1秒前
搜集达人应助萧白竹采纳,获得10
1秒前
搜集达人应助萧白竹采纳,获得10
1秒前
赘婿应助萧白竹采纳,获得10
1秒前
隐形曼青应助萧白竹采纳,获得10
1秒前
深情安青应助萧白竹采纳,获得10
1秒前
香蕉觅云应助萧白竹采纳,获得10
1秒前
cocolu应助萧白竹采纳,获得10
1秒前
1秒前
1秒前
桃桃完成签到 ,获得积分10
2秒前
yangyangyang发布了新的文献求助30
3秒前
打打应助佟厉采纳,获得10
3秒前
无奈青发布了新的文献求助10
3秒前
swallow发布了新的文献求助10
4秒前
棉花发布了新的文献求助10
6秒前
6秒前
鹏笑发布了新的文献求助10
6秒前
斗图不怕输完成签到,获得积分10
7秒前
acetdw完成签到,获得积分10
10秒前
kento发布了新的文献求助30
11秒前
12秒前
14秒前
cc应助Zzzzzzzz采纳,获得10
15秒前
sunshine完成签到 ,获得积分10
16秒前
16秒前
16秒前
程程完成签到 ,获得积分10
17秒前
18秒前
小猪哼哼发布了新的文献求助10
18秒前
无花果应助畅快的饼干采纳,获得10
18秒前
18秒前
棉花完成签到,获得积分20
18秒前
六碗鱼完成签到 ,获得积分10
18秒前
狂野雁丝发布了新的文献求助30
19秒前
19秒前
小伊完成签到,获得积分10
20秒前
激动的访文完成签到 ,获得积分10
20秒前
21秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
Development and Industrialization of Stereoregular Polynorbornenes 500
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3418878
求助须知:如何正确求助?哪些是违规求助? 3020285
关于积分的说明 8891751
捐赠科研通 2707695
什么是DOI,文献DOI怎么找? 1484940
科研通“疑难数据库(出版商)”最低求助积分说明 686261
邀请新用户注册赠送积分活动 681414