Transcriptomic and metabolomic analyses reveal the main metabolites in Dendrobium officinale leaves during the harvesting period

牡荆素 生物 多糖 代谢组学 转录组 单糖 初级代谢物 植物 生物化学 代谢物 类黄酮 基因 基因表达 抗氧化剂 生物信息学
作者
Can Si,Danqi Zeng,Zhenming Yu,Jaime A. Teixeira da Silva,Jun Duan,Chunmei He,Jianxia Zhang
出处
期刊:Plant Physiology and Biochemistry [Elsevier BV]
卷期号:190: 24-34 被引量:18
标识
DOI:10.1016/j.plaphy.2022.08.026
摘要

Dendrobium officinale, which is a medicine food homology plant, contains many metabolites, especially polysaccharides and flavonoids. Unlike flowers and stems, which are the most frequently harvested organs for a variety of uses, leaves tend to be discarded. This study assessed main metabolites in leaves to identify the most appropriate timing of collection during harvest, which was divided into three stages (S1–S3: 8, 10, and 11 months after sprouting, respectively). Metabolomic and transcriptomic analyses of S1–S3 were performed. Water-soluble polysaccharides (WSPs), flavonoids and free amino acids (FAAs) were detected in leaves. WSPs decreased from S1 to S3 but flavonoids and some FAAs (e.g., phophoserine) increased from S1 to S2, then decreased from S2 to S3. In all three stages, mannose was the dominant monosaccharide among WSPs, followed by glucose. In S2, 35 flavonoids were identified, the most abundant being rutin, schaftoside and vitexin, while 34 FAAs were identified in all three stages, the most abundant being tyrosine, phosphoserine and alanine. A total of 2584, 3414 and 2032 differentially expressed genes (DEGs) were discovered in S1 vs S2, S1 vs S3 and S1 vs S3, respectively. Correlation analysis revealed that five DEGs (DoSUS, DoXYLA, DoFRK, DoGMP, and DoCSLA), two DEGs (DoDFR, and DoANS) and a single DEG (DoPGAM) were involved in the metabolism of WSPs, flavonoids and phosphoserine, respectively. The findings of this study lay a foundation for the commercial exploitation of metabolites in the harvested leaves of D. officinale, and the use of detected DEGs in applied genetic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的小乌龟完成签到,获得积分10
1秒前
2秒前
极品男大完成签到,获得积分10
2秒前
StevenCai完成签到,获得积分10
2秒前
夹心发布了新的文献求助10
3秒前
白雪皑皑完成签到 ,获得积分10
3秒前
在水一方应助ln177采纳,获得10
3秒前
bangbangbnag完成签到,获得积分10
5秒前
5秒前
李健的小迷弟应助萌酱采纳,获得10
5秒前
panpanh发布了新的文献求助10
6秒前
6秒前
开放的可仁完成签到,获得积分10
6秒前
平常的毛豆应助非洲饿龟采纳,获得30
7秒前
7秒前
bai完成签到,获得积分10
8秒前
Jasper应助喜悦的丹亦采纳,获得10
8秒前
9秒前
9秒前
9秒前
dox关闭了dox文献求助
9秒前
乔治韦斯莱完成签到 ,获得积分10
11秒前
Jasper应助轩辕十四采纳,获得30
11秒前
乔123发布了新的文献求助10
12秒前
ZZZZ完成签到,获得积分10
14秒前
夹心完成签到,获得积分10
14秒前
14秒前
14秒前
黑大帅完成签到,获得积分10
14秒前
热情的骁完成签到,获得积分20
15秒前
闪闪山水发布了新的文献求助10
15秒前
萌酱完成签到,获得积分10
15秒前
欠虐宝宝发布了新的文献求助10
16秒前
元元元yuan完成签到,获得积分10
17秒前
yang完成签到,获得积分10
17秒前
一一发布了新的文献求助10
19秒前
烟花应助无心的易槐采纳,获得10
19秒前
19秒前
忧郁的风华给忧郁的风华的求助进行了留言
20秒前
mauve完成签到 ,获得积分10
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970