VFedCS: Optimizing Client Selection for Volatile Federated Learning

计算机科学 选择(遗传算法) 服务器 分布式计算 数据库 计算机网络 人工智能
作者
Fang Shi,Chunchao Hu,Weiwei Lin,Lisheng Fan,Tiansheng Huang,Wentai Wu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24995-25010 被引量:20
标识
DOI:10.1109/jiot.2022.3195073
摘要

Federated learning (FL) has shown great potential as a privacy-preserving solution to training a centralized model based on local data from available clients. However, we argue that, over the course of training, the available clients may exhibit some volatility in terms of the client population, client data, and training status. Considering these volatilities, we propose a new learning scenario termed volatile federated learning (volatile FL) featuring set volatility, statistical volatility, and training volatility. The volatile client set along with the dynamic of clients' data and the unreliable nature of clients (e.g., unintentional shutdown and network instability) greatly increase the difficulty of client selection. In this article, we formulate and decompose the global problem into two subproblems based on alternating minimization. For an efficient settlement for the proposed selection problem, we quantify the impact of clients' data and resource heterogeneity for volatile FL and introduce the cumulative effective participation data (CEPD) as an optimization objective. Based on this, we propose upper confidence bound-based greedy selection, dubbed UCB-GS, to address the client selection problem in volatile FL. Theoretically, we prove that the regret of UCB-GS is strictly bounded by a finite constant, justifying its theoretical feasibility. Furthermore, experimental results show that our method significantly reduces the number of training rounds (by up to 62%) while increasing the global model's accuracy by 7.51%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨与白发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
忧郁的书包完成签到,获得积分10
7秒前
锐志无锋完成签到,获得积分10
10秒前
难过含烟完成签到 ,获得积分10
11秒前
非我完成签到 ,获得积分0
12秒前
脑洞疼应助六六采纳,获得10
14秒前
不是省油的灯完成签到,获得积分10
15秒前
15秒前
15秒前
鹅鹅鹅完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
hyacinth完成签到,获得积分10
16秒前
晚夜完成签到 ,获得积分10
18秒前
daisy完成签到 ,获得积分20
19秒前
希望天下0贩的0应助123456采纳,获得10
20秒前
王长莲发布了新的文献求助10
21秒前
LJJ完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助50
22秒前
ao123完成签到,获得积分20
23秒前
GG发布了新的文献求助10
24秒前
小米应助科研通管家采纳,获得10
25秒前
25秒前
y741应助科研通管家采纳,获得10
25秒前
小米应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
y741应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得30
25秒前
领导范儿应助科研通管家采纳,获得30
25秒前
25秒前
25秒前
852应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789611
求助须知:如何正确求助?哪些是违规求助? 5721691
关于积分的说明 15475042
捐赠科研通 4917409
什么是DOI,文献DOI怎么找? 2646975
邀请新用户注册赠送积分活动 1594567
关于科研通互助平台的介绍 1549112