VFedCS: Optimizing Client Selection for Volatile Federated Learning

计算机科学 选择(遗传算法) 服务器 分布式计算 数据库 计算机网络 人工智能
作者
Fang Shi,Chunchao Hu,Weiwei Lin,Lisheng Fan,Tiansheng Huang,Wentai Wu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24995-25010 被引量:17
标识
DOI:10.1109/jiot.2022.3195073
摘要

Federated learning (FL) has shown great potential as a privacy-preserving solution to training a centralized model based on local data from available clients. However, we argue that, over the course of training, the available clients may exhibit some volatility in terms of the client population, client data, and training status. Considering these volatilities, we propose a new learning scenario termed volatile federated learning (volatile FL) featuring set volatility, statistical volatility, and training volatility. The volatile client set along with the dynamic of clients' data and the unreliable nature of clients (e.g., unintentional shutdown and network instability) greatly increase the difficulty of client selection. In this article, we formulate and decompose the global problem into two subproblems based on alternating minimization. For an efficient settlement for the proposed selection problem, we quantify the impact of clients' data and resource heterogeneity for volatile FL and introduce the cumulative effective participation data (CEPD) as an optimization objective. Based on this, we propose upper confidence bound-based greedy selection, dubbed UCB-GS, to address the client selection problem in volatile FL. Theoretically, we prove that the regret of UCB-GS is strictly bounded by a finite constant, justifying its theoretical feasibility. Furthermore, experimental results show that our method significantly reduces the number of training rounds (by up to 62%) while increasing the global model's accuracy by 7.51%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助纪间采纳,获得10
刚刚
冷静凌旋完成签到,获得积分10
刚刚
111完成签到,获得积分10
2秒前
达达完成签到 ,获得积分10
3秒前
冷静凌旋发布了新的文献求助30
4秒前
4秒前
Ngu完成签到,获得积分10
4秒前
狗狗发布了新的文献求助10
4秒前
5秒前
李健的小迷弟应助fight采纳,获得10
6秒前
6秒前
乖乖的阿轩完成签到,获得积分10
6秒前
自觉的月亮完成签到,获得积分20
8秒前
两耳不闻窗外事完成签到,获得积分10
9秒前
脑洞疼应助狗狗采纳,获得10
9秒前
松绿格完成签到 ,获得积分10
10秒前
10秒前
10秒前
玉鱼儿发布了新的文献求助10
10秒前
11秒前
11秒前
zxc完成签到,获得积分10
12秒前
zzer发布了新的文献求助10
13秒前
Cold-Drink-Shop完成签到,获得积分10
14秒前
疯狂的红牛完成签到,获得积分20
14秒前
狗狗完成签到,获得积分10
14秒前
Aaaaaa瘾发布了新的文献求助10
14秒前
ldgsd完成签到,获得积分10
15秒前
15秒前
欣喜的代容完成签到 ,获得积分10
15秒前
cl完成签到 ,获得积分10
17秒前
小小狗完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
娇气的白卉完成签到,获得积分10
18秒前
Mira发布了新的文献求助200
20秒前
20秒前
21秒前
朴素若灵完成签到,获得积分20
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786078
关于积分的说明 7774957
捐赠科研通 2441899
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825