已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

VFedCS: Optimizing Client Selection for Volatile Federated Learning

计算机科学 选择(遗传算法) 服务器 分布式计算 数据库 计算机网络 人工智能
作者
Fang Shi,Chunchao Hu,Weiwei Lin,Lisheng Fan,Tiansheng Huang,Wentai Wu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (24): 24995-25010 被引量:20
标识
DOI:10.1109/jiot.2022.3195073
摘要

Federated learning (FL) has shown great potential as a privacy-preserving solution to training a centralized model based on local data from available clients. However, we argue that, over the course of training, the available clients may exhibit some volatility in terms of the client population, client data, and training status. Considering these volatilities, we propose a new learning scenario termed volatile federated learning (volatile FL) featuring set volatility, statistical volatility, and training volatility. The volatile client set along with the dynamic of clients' data and the unreliable nature of clients (e.g., unintentional shutdown and network instability) greatly increase the difficulty of client selection. In this article, we formulate and decompose the global problem into two subproblems based on alternating minimization. For an efficient settlement for the proposed selection problem, we quantify the impact of clients' data and resource heterogeneity for volatile FL and introduce the cumulative effective participation data (CEPD) as an optimization objective. Based on this, we propose upper confidence bound-based greedy selection, dubbed UCB-GS, to address the client selection problem in volatile FL. Theoretically, we prove that the regret of UCB-GS is strictly bounded by a finite constant, justifying its theoretical feasibility. Furthermore, experimental results show that our method significantly reduces the number of training rounds (by up to 62%) while increasing the global model's accuracy by 7.51%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助聪聪great采纳,获得10
2秒前
RWcreator完成签到 ,获得积分10
2秒前
橘子柚子完成签到 ,获得积分10
3秒前
DocM完成签到 ,获得积分10
4秒前
大包鸡完成签到 ,获得积分10
4秒前
Lester完成签到 ,获得积分10
4秒前
所所应助高铭泽采纳,获得10
6秒前
丘比特应助高铭泽采纳,获得10
6秒前
大模型应助高铭泽采纳,获得10
6秒前
汉堡包应助高铭泽采纳,获得10
6秒前
小马甲应助高铭泽采纳,获得10
6秒前
欧皇完成签到,获得积分20
8秒前
欧皇发布了新的文献求助50
9秒前
Lucas应助哆啦小奶龙采纳,获得10
10秒前
boldhammer完成签到 ,获得积分10
10秒前
漓一完成签到 ,获得积分10
12秒前
13秒前
14秒前
jingutaimi完成签到,获得积分10
15秒前
Caer完成签到,获得积分10
17秒前
17秒前
17秒前
机智灯泡完成签到 ,获得积分10
19秒前
20秒前
山复尔尔完成签到 ,获得积分10
20秒前
菲菲完成签到 ,获得积分10
21秒前
精明冰夏完成签到,获得积分10
21秒前
风不定发布了新的文献求助30
22秒前
李程阳完成签到 ,获得积分10
23秒前
小机灵发布了新的文献求助10
24秒前
twinkle完成签到 ,获得积分10
26秒前
小吴完成签到,获得积分10
27秒前
选兵完成签到,获得积分10
28秒前
伶俐的金连完成签到 ,获得积分10
28秒前
pass完成签到 ,获得积分10
28秒前
曲淳完成签到,获得积分10
29秒前
29秒前
哆啦小奶龙完成签到,获得积分10
30秒前
30秒前
爱听歌电灯胆完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504