DPS: Dynamic Pricing and Scheduling for Distributed Machine Learning Jobs in Edge-Cloud Networks

云计算 计算机科学 试验台 边缘计算 调度(生产过程) 软件部署 作业车间调度 GSM演进的增强数据速率 分布式计算 地铁列车时刻表 人工智能 计算机网络 数学优化 操作系统 数学
作者
Ruiting Zhou,Ne Wang,Yifeng Huang,Jinlong Pang,Hao Chen
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:22 (11): 6377-6393 被引量:4
标识
DOI:10.1109/tmc.2022.3195765
摘要

5G and Internet of Things stimulate smart applications of edge computing, such as autonomous driving and smart city. As edge computing power increases, more and more machine learning (ML) jobs will be trained in the edge-cloud network, adopting the parameter server (PS) architecture. Due to the distinct features of the edge (low-latency and the scarcity of resources), the cloud (high delay and rich computing capacity) and ML jobs (frequent communication between workers and PSs and unfixed runtime), existing cloud job pricing and scheduling algorithms are not applicable. Therefore, how to price, deploy and schedule ML jobs in the edge-cloud network becomes a challenging problem. To solve it, we propose an auction-based online framework DPS. DPS consists of three major parts: job admission control, price function design and scheduling orchestrator. DPS dynamically prices workers and PSs based on historical job information and real-time system status, and decides whether to accept the job according to the deployment cost. DPS then deploys and schedules accepted ML jobs to pursue the maximum social welfare. Through theoretical analysis, we prove that DPS can achieve a good competition ratio and truthfulness in polynomial time. Large-scale simulations and testbed experiments show that DPS can improve social welfare by at least $95\%$ , compared with benchmark algorithms in today's cloud system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wzx发布了新的文献求助10
刚刚
fef应助liuqi采纳,获得10
1秒前
韩凌完成签到,获得积分10
2秒前
斯文败类应助kyle采纳,获得10
3秒前
Lotus发布了新的文献求助10
3秒前
恶恶么v发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Alan完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
兔图图发布了新的文献求助10
7秒前
Ken完成签到,获得积分10
9秒前
负责凛完成签到,获得积分10
9秒前
10秒前
101完成签到 ,获得积分10
11秒前
Akinmide完成签到 ,获得积分10
11秒前
12秒前
12秒前
愉快洋葱完成签到,获得积分10
13秒前
诚心纸鹤发布了新的文献求助10
13秒前
俊逸星月发布了新的文献求助10
13秒前
Lumi发布了新的文献求助10
13秒前
15秒前
16秒前
16秒前
笑面客发布了新的文献求助10
17秒前
kyle发布了新的文献求助10
18秒前
迷人灵发布了新的文献求助10
18秒前
兔图图完成签到,获得积分10
19秒前
19秒前
小哲完成签到,获得积分10
19秒前
19秒前
20秒前
桐桐应助xiaojian_291采纳,获得10
21秒前
随便完成签到,获得积分10
21秒前
pgjwl发布了新的文献求助10
21秒前
如意葶完成签到,获得积分20
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766426
求助须知:如何正确求助?哪些是违规求助? 3310919
关于积分的说明 10156458
捐赠科研通 3026018
什么是DOI,文献DOI怎么找? 1660904
邀请新用户注册赠送积分活动 793669
科研通“疑难数据库(出版商)”最低求助积分说明 755759