Hierarchical Organ-Aware Total-Body Standard-Dose PET Reconstruction From Low-Dose PET and CT Images

核医学 正电子发射断层摄影术 PET-CT 迭代重建 全身成像 计算机科学 断层摄影术 图像质量 成像体模 人工智能 医学 放射科 图像(数学)
作者
Jiadong Zhang,Zhiming Cui,Caiwen Jiang,Shanshan Guo,Fei Gao,Dinggang Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 13258-13270 被引量:16
标识
DOI:10.1109/tnnls.2023.3266551
摘要

Positron emission tomography (PET) is an important functional imaging technology in early disease diagnosis. Generally, the gamma ray emitted by standard-dose tracer inevitably increases the exposure risk to patients. To reduce dosage, a lower dose tracer is often used and injected into patients. However, this often leads to low-quality PET images. In this article, we propose a learning-based method to reconstruct total-body standard-dose PET (SPET) images from low-dose PET (LPET) images and corresponding total-body computed tomography (CT) images. Different from previous works focusing only on a certain part of human body, our framework can hierarchically reconstruct total-body SPET images, considering varying shapes and intensity distributions of different body parts. Specifically, we first use one global total-body network to coarsely reconstruct total-body SPET images. Then, four local networks are designed to finely reconstruct head-neck, thorax, abdomen-pelvic, and leg parts of human body. Moreover, to enhance each local network learning for the respective local body part, we design an organ-aware network with a residual organ-aware dynamic convolution (RO-DC) module by dynamically adapting organ masks as additional inputs. Extensive experiments on 65 samples collected from uEXPLORER PET/CT system demonstrate that our hierarchical framework can consistently improve the performance of all body parts, especially for total-body PET images with PSNR of 30.6 dB, outperforming the state-of-the-art methods in SPET image reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白发布了新的文献求助10
1秒前
隐形曼青应助小猴采纳,获得10
1秒前
灵巧荆发布了新的文献求助10
1秒前
2秒前
kdkfjaljk关注了科研通微信公众号
3秒前
Jackson发布了新的文献求助10
3秒前
3秒前
phz发布了新的文献求助10
3秒前
贺兰鸵鸟完成签到,获得积分10
3秒前
马保国123发布了新的文献求助10
4秒前
4秒前
直率尔芙完成签到,获得积分10
4秒前
shenyanlei完成签到,获得积分20
4秒前
尔云发布了新的文献求助20
4秒前
wwuu完成签到,获得积分10
4秒前
4秒前
xiaoxiaomi应助阳光下的星星采纳,获得20
5秒前
爱X7的嘛喽完成签到,获得积分10
5秒前
Louise完成签到,获得积分10
5秒前
5秒前
喜悦中道应助白白采纳,获得10
6秒前
CipherSage应助dong采纳,获得10
7秒前
7秒前
7秒前
zz完成签到 ,获得积分10
7秒前
7秒前
223344完成签到,获得积分10
8秒前
欧阳半仙完成签到,获得积分10
8秒前
9秒前
bkagyin应助xm采纳,获得10
9秒前
赘婿应助gwh68964402gwh采纳,获得10
9秒前
我瞎蒙完成签到,获得积分10
10秒前
yzz发布了新的文献求助10
10秒前
赖道之发布了新的文献求助10
11秒前
熊猫完成签到,获得积分10
11秒前
Yvonne发布了新的文献求助10
12秒前
NANA发布了新的文献求助10
12秒前
yoyocici1505完成签到,获得积分10
12秒前
ding应助平常的擎宇采纳,获得30
13秒前
於松应助Chang采纳,获得20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762