Hierarchical Organ-Aware Total-Body Standard-Dose PET Reconstruction From Low-Dose PET and CT Images

核医学 正电子发射断层摄影术 PET-CT 迭代重建 全身成像 计算机科学 断层摄影术 图像质量 成像体模 人工智能 医学 放射科 图像(数学)
作者
Jiadong Zhang,Zhiming Cui,Caiwen Jiang,Shanshan Guo,Fei Gao,Dinggang Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 13258-13270 被引量:16
标识
DOI:10.1109/tnnls.2023.3266551
摘要

Positron emission tomography (PET) is an important functional imaging technology in early disease diagnosis. Generally, the gamma ray emitted by standard-dose tracer inevitably increases the exposure risk to patients. To reduce dosage, a lower dose tracer is often used and injected into patients. However, this often leads to low-quality PET images. In this article, we propose a learning-based method to reconstruct total-body standard-dose PET (SPET) images from low-dose PET (LPET) images and corresponding total-body computed tomography (CT) images. Different from previous works focusing only on a certain part of human body, our framework can hierarchically reconstruct total-body SPET images, considering varying shapes and intensity distributions of different body parts. Specifically, we first use one global total-body network to coarsely reconstruct total-body SPET images. Then, four local networks are designed to finely reconstruct head-neck, thorax, abdomen-pelvic, and leg parts of human body. Moreover, to enhance each local network learning for the respective local body part, we design an organ-aware network with a residual organ-aware dynamic convolution (RO-DC) module by dynamically adapting organ masks as additional inputs. Extensive experiments on 65 samples collected from uEXPLORER PET/CT system demonstrate that our hierarchical framework can consistently improve the performance of all body parts, especially for total-body PET images with PSNR of 30.6 dB, outperforming the state-of-the-art methods in SPET image reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油发布了新的文献求助10
2秒前
2秒前
研友_VZG7GZ应助英勇夏旋采纳,获得10
3秒前
共享精神应助恋空采纳,获得10
4秒前
hsj发布了新的文献求助10
4秒前
5秒前
南霖完成签到,获得积分10
5秒前
Lucas应助Jimmybythebay采纳,获得10
6秒前
6秒前
小肥脸完成签到 ,获得积分10
8秒前
8秒前
121231233完成签到,获得积分10
8秒前
冷傲魔镜发布了新的文献求助10
9秒前
Lucas应助等待的风华采纳,获得10
10秒前
10秒前
10秒前
沉静妙之发布了新的文献求助10
11秒前
liul发布了新的文献求助10
11秒前
12秒前
12秒前
Yuri完成签到,获得积分10
12秒前
科目三应助无限的含羞草采纳,获得10
12秒前
FashionBoy应助额我认为采纳,获得10
13秒前
高丰发布了新的文献求助10
14秒前
叶95发布了新的文献求助10
14秒前
15秒前
hhw发布了新的文献求助10
15秒前
15秒前
JamesPei应助冷傲魔镜采纳,获得10
17秒前
17秒前
18秒前
18秒前
脑洞疼应助恋空采纳,获得10
19秒前
大模型应助choshuenco采纳,获得10
19秒前
mmmmmmm发布了新的文献求助10
20秒前
ding应助聪慧的致远采纳,获得10
21秒前
22秒前
24秒前
24秒前
拉长的绮梅完成签到,获得积分10
24秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334609
求助须知:如何正确求助?哪些是违规求助? 2963868
关于积分的说明 8611689
捐赠科研通 2642793
什么是DOI,文献DOI怎么找? 1446965
科研通“疑难数据库(出版商)”最低求助积分说明 670499
邀请新用户注册赠送积分活动 658693