亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Patch-Based Siamese 3D Convolutional Neural Network for Early Alzheimer's Disease Using Multi-Modal Approach

卷积神经网络 情态动词 计算机科学 人工神经网络 疾病 人工智能 医学 内科学 材料科学 高分子化学
作者
Rashmi Kumari,Subhranil Das,Akriti Nigam,Shashank Pushkar
出处
期刊:Iete Journal of Research [Informa]
卷期号:70 (4): 3804-3822 被引量:5
标识
DOI:10.1080/03772063.2023.2205857
摘要

Alzheimer's Disease (AD), the most common type of dementia, is characterized by memory issues that worsen with time. When evaluating single modalities, there are specific efficient learning techniques that produce a poor identification rate. The clinical significance of Mild Cognitive Impairment (MCI) has clinical importance, which is crucial for identifying and categorizing AD patients. This study includes the utilization of 3D T1 weighted /Magnetic Resonance Imaging (3D T1WI MRI) images where the structural changes in the brain are identified for predicting early AD. The classification accuracy for AD, MCI, and Normal Control (NC) has also increased due to cognitive evaluations when comparing three one vs one classifications, i.e. AD vs. NC, MCI vs. NC, AD vs. MCI, and multi-class classification. The proposed approach's novelty is a binary and multi-class classification of structural MRI images using a Siamese 3D Convolutional Neural Network (Siamese 3D-CNN). The Stochastic Gradient Descent (SGD) has been employed to modify the proposed network's weights, and 5-Fold Cross-Validation (CV) has been used for each binary classification task. Our study used the neuropsychological data of 417 people from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to validate the suggested methodology. Experimental results demonstrate that accuracy, sensitivity, and specificity for three binary classifications produce the maximum percentage, in contrast to other relevant approaches found in the literature. In addition, the multi-class classification accuracy of 99.8% was attained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
44秒前
传奇3应助ffffan采纳,获得10
44秒前
小强完成签到 ,获得积分10
44秒前
liqiqi完成签到,获得积分20
52秒前
1分钟前
liqiqi发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
Marciu33完成签到,获得积分10
1分钟前
我是老大应助lele200218采纳,获得10
1分钟前
2分钟前
2分钟前
lele200218完成签到,获得积分10
2分钟前
lele200218发布了新的文献求助10
2分钟前
2分钟前
彭于晏应助燕鹏采纳,获得10
2分钟前
2分钟前
Yangqx007完成签到,获得积分10
2分钟前
矜天完成签到 ,获得积分10
3分钟前
3分钟前
Yoanna_UTHSC应助Yangqx007采纳,获得30
3分钟前
3分钟前
ffffan发布了新的文献求助10
3分钟前
adcc102完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
李爱国应助科研通管家采纳,获得10
3分钟前
风中汽车完成签到,获得积分10
3分钟前
Marciu33发布了新的文献求助10
3分钟前
3分钟前
ffffan完成签到,获得积分10
3分钟前
英俊的铭应助qiuxuan100采纳,获得10
4分钟前
dilli完成签到 ,获得积分10
4分钟前
dcy关闭了dcy文献求助
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335303
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8613997
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447358
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974