A Monocular SLAM System Based on ResNet Depth Estimation

单眼 人工智能 同时定位和映射 计算机科学 计算机视觉 初始化 RGB颜色模型 单目视觉 卷积神经网络 解码方法 水准点(测量) 机器人 移动机器人 地理 算法 大地测量学 程序设计语言
作者
Zheng Li,Lei Yu,Zihao Pan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (13): 15106-15114 被引量:1
标识
DOI:10.1109/jsen.2023.3275324
摘要

Currently, monocular simultaneous location and mapping (SLAM) systems cannot extract depth information from monocular cameras directly and require initialization to solve the problem of scale uncertainty. It is extremely difficult to reconstruct maps using such systems, and it is difficult to cope with scenarios that require navigation and obstacle avoidance. In order to solve the above problems, in this article, a simple monocular depth estimation network framework is proposed. Transfer learning from a pre-trained ResNet is utilized for the encoding part of the framework and a convolutional neural network (CNN) is used for the decoding part. Only a few training parameters and iterations are required to obtain fairly accurate depth information. At the same time, a similarity-based filter is used to denoise the surfels and improve the red green blue-depth (RGB-D) SLAM system, which not only reduces the impact of the depth estimation error on the surfels but also ensures the quality of the dense mapping. From the results of comparative experiments, it can be seen that the proposed monocular depth estimation network framework is better than current popular methods, and the associated SLAM system can achieve pose estimation and dense mapping tasks. As a monocular camera-based SLAM system, the proposed method is a promising and practical approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sepvvvvirtue发布了新的文献求助10
刚刚
刚刚
pp发布了新的文献求助10
刚刚
wwwewqe关注了科研通微信公众号
刚刚
1900tdlemon完成签到,获得积分10
刚刚
张头发发布了新的文献求助10
1秒前
蜀安应助zlz采纳,获得150
1秒前
DCH完成签到,获得积分10
1秒前
2秒前
华仔应助大婷子采纳,获得10
2秒前
Lucas应助友好的哈密瓜采纳,获得10
2秒前
刘唐荣完成签到,获得积分10
2秒前
XXXXXX发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
xiaoxintaijie发布了新的文献求助10
4秒前
NexusExplorer应助chai采纳,获得10
5秒前
233完成签到,获得积分10
5秒前
sghsh完成签到,获得积分10
5秒前
5秒前
完美世界应助清蒸三文鱼采纳,获得10
5秒前
5秒前
5秒前
oohey发布了新的文献求助10
5秒前
Hello应助闪闪的jian采纳,获得10
5秒前
Hello应助哒哒哒采纳,获得10
6秒前
ll发布了新的文献求助10
6秒前
丘比特应助眼泪划过面容采纳,获得10
6秒前
LL发布了新的文献求助10
6秒前
123完成签到,获得积分10
6秒前
细腻灵完成签到,获得积分20
7秒前
xiaofeizhu发布了新的文献求助10
7秒前
7秒前
领导范儿应助Sepvvvvirtue采纳,获得10
7秒前
7秒前
7秒前
7秒前
hsa_ID完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785