An improved multi-objective marine predator algorithm for gene selection in classification of cancer microarray data

初始化 计算机科学 特征选择 多目标优化 选择(遗传算法) 进化算法 人口 帕累托原理 算法 支持向量机 维数(图论) 数据挖掘 人工智能 机器学习 数学优化 数学 社会学 人口学 程序设计语言 纯数学
作者
Qiyong Fu,Qi Li,Xiaobo Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:160: 107020-107020 被引量:12
标识
DOI:10.1016/j.compbiomed.2023.107020
摘要

Gene selection (GS) is an important branch of interest within the field of feature selection, which is widely used in cancer classification. It provides essential insights into the pathogenesis of cancer and enables a deeper understanding of cancer data. In cancer classification, GS is essentially a multi-objective optimization problem, which aims to simultaneously optimize the two objectives of classification accuracy and the size of the gene subset. The marine predator algorithm (MPA) has been successfully employed in practical applications, however, its random initialization can lead to blindness, which may adversely affect the convergence of the algorithm. Furthermore, the elite individuals in guiding evolution are randomly chosen from the Pareto solutions, which may degrade the good exploration performance of the population. To overcome these limitations, a multi-objective improved MPA with continuous mapping initialization and leader selection strategies is proposed. In this work, a new continuous mapping initialization with ReliefF overwhelms the defects with less information in late evolution. Moreover, an improved elite selection mechanism with Gaussian distribution guides the population to evolve towards a better Pareto front. Finally, an efficient mutation method is adopted to prevent evolutionary stagnation. To evaluate its effectiveness, the proposed algorithm was compared with 9 famous algorithms. The experimental results on 16 datasets demonstrate that the proposed algorithm can significantly reduce the data dimension and obtain the highest classification accuracy on most of high-dimension cancer microarray datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好妙菱发布了新的文献求助10
刚刚
刚刚
Orange应助gdh采纳,获得10
2秒前
涳域发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
烈火凤凰完成签到,获得积分10
2秒前
风趣小蜜蜂完成签到 ,获得积分10
2秒前
YangSY发布了新的文献求助10
3秒前
搜集达人应助Robin采纳,获得10
3秒前
womendoukeyi完成签到,获得积分20
3秒前
5秒前
毛豆爸爸完成签到,获得积分0
5秒前
linwang发布了新的文献求助10
6秒前
Litchi完成签到 ,获得积分10
6秒前
6秒前
轨迹应助解放之鼓采纳,获得30
6秒前
深情安青应助DDL采纳,获得10
6秒前
烈火凤凰发布了新的文献求助10
7秒前
资浩阑完成签到,获得积分10
8秒前
lnan发布了新的文献求助10
8秒前
8秒前
1008611发布了新的文献求助10
9秒前
小二郎应助1111采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
真幽发布了新的文献求助10
10秒前
10秒前
YEYE发布了新的文献求助30
10秒前
小马甲应助六一采纳,获得10
10秒前
11秒前
科目三应助好运一点采纳,获得10
12秒前
12秒前
Singularity发布了新的文献求助10
13秒前
14秒前
sanapri完成签到,获得积分10
14秒前
tion66发布了新的文献求助10
14秒前
超帅冬云完成签到 ,获得积分10
14秒前
15秒前
852应助brd采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770620
求助须知:如何正确求助?哪些是违规求助? 5586741
关于积分的说明 15424904
捐赠科研通 4904200
什么是DOI,文献DOI怎么找? 2638537
邀请新用户注册赠送积分活动 1586443
关于科研通互助平台的介绍 1541500