电池(电)
电池组
计算机科学
锂离子电池
锂(药物)
能源管理
管理制度
汽车工程
可靠性工程
功率(物理)
工程类
能量(信号处理)
运营管理
医学
内分泌学
物理
统计
量子力学
数学
作者
Nourallah Ghaeminezhad,Zhisheng Wang,Quan Ouyang
标识
DOI:10.1016/j.applthermaleng.2022.119497
摘要
Lithium-ion batteries are the preferred power source for electric vehicle applications due to their high energy density and long service life, thus significantly contributing to greenhouse gas emissions and pollution reduction. Their performance and lifetime are significantly affected by temperature. Hence, a battery thermal management system, which keeps the battery pack operating in an average temperature range, plays an imperative role in the battery systems’ performance and safety. Over the last decade, there have been numerous attempts to develop effective thermal management systems for commercial lithium-ion batteries. However, only a few analyze and compare thermal management techniques based on a control-oriented viewpoint for a battery pack. To fill this gap, a review of the most up-to-date battery thermal management methods applied to lithium-ion battery packs is presented in this paper. They are broadly classified as non-feedback-based and feedback-based methods. Finally, the paper concludes with a detailed discussion of the strengths and weaknesses of the reviewed techniques, along with some suggestions for future study.
科研通智能强力驱动
Strongly Powered by AbleSci AI