亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning

人工智能 计算机科学 支持向量机 特征(语言学) 模式识别(心理学) 深度学习 卷积神经网络 接收机工作特性 特征向量 乳腺癌 乳腺超声检查 水准点(测量) 乳腺摄影术 机器学习 癌症 医学 哲学 语言学 大地测量学 内科学 地理
作者
Jihye Baek,Avice M. O’Connell,Kevin J. Parker
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (4): 045013-045013 被引量:6
标识
DOI:10.1088/2632-2153/ac9bcc
摘要

The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature-based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease-specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log-compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and each feature's data point in multiparametric space. The distance can quantitatively assess a lesion and suggest the probability of malignancy that is color-coded and overlaid onto B-mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and Breast Imaging Reporting and Data System enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助xiaowei采纳,获得10
11秒前
14秒前
20秒前
xiaowei发布了新的文献求助10
23秒前
okt111完成签到,获得积分10
23秒前
Pattis完成签到 ,获得积分10
30秒前
33秒前
孙嘉遇发布了新的文献求助10
40秒前
Ava应助孙嘉遇采纳,获得10
57秒前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
今后应助mmm采纳,获得10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
Akim应助morena采纳,获得10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
lxl完成签到,获得积分10
1分钟前
xiaowei完成签到,获得积分20
1分钟前
SciGPT应助小唐采纳,获得10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
生动的沛白完成签到 ,获得积分10
2分钟前
爆米花应助搞怪的砖家采纳,获得10
2分钟前
JamesPei应助ABC的风格采纳,获得10
2分钟前
李y梅子完成签到 ,获得积分10
2分钟前
2分钟前
yueying完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
猫橙密语发布了新的文献求助80
2分钟前
2分钟前
ABC的风格发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
脑洞疼应助潘瑞采纳,获得10
3分钟前
图图发布了新的文献求助10
3分钟前
3分钟前
搞怪的砖家完成签到,获得积分20
3分钟前
3分钟前
zqq完成签到,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657897
求助须知:如何正确求助?哪些是违规求助? 4813963
关于积分的说明 15080602
捐赠科研通 4816131
什么是DOI,文献DOI怎么找? 2577136
邀请新用户注册赠送积分活动 1532156
关于科研通互助平台的介绍 1490689