Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning

人工智能 计算机科学 支持向量机 特征(语言学) 模式识别(心理学) 深度学习 卷积神经网络 接收机工作特性 特征向量 乳腺癌 乳腺超声检查 水准点(测量) 乳腺摄影术 机器学习 癌症 医学 哲学 语言学 大地测量学 内科学 地理
作者
Jihye Baek,Avice M. O’Connell,Kevin J. Parker
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (4): 045013-045013 被引量:6
标识
DOI:10.1088/2632-2153/ac9bcc
摘要

The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature-based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease-specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log-compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and each feature's data point in multiparametric space. The distance can quantitatively assess a lesion and suggest the probability of malignancy that is color-coded and overlaid onto B-mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and Breast Imaging Reporting and Data System enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助第七个星球采纳,获得10
刚刚
mooncake发布了新的文献求助10
刚刚
zx发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
Ludi完成签到,获得积分10
1秒前
伏波完成签到,获得积分0
1秒前
Hello应助KeYang采纳,获得10
2秒前
小马发布了新的文献求助30
2秒前
西出阳关完成签到,获得积分10
2秒前
jinlin完成签到,获得积分10
2秒前
3秒前
丘比特应助爱听歌采纳,获得10
3秒前
4秒前
horizon完成签到,获得积分20
4秒前
5秒前
5秒前
诚心冬亦完成签到,获得积分10
5秒前
天明完成签到,获得积分10
5秒前
稳重的太兰完成签到 ,获得积分10
5秒前
6秒前
6秒前
griffon完成签到,获得积分10
6秒前
木木完成签到,获得积分10
7秒前
cyndi发布了新的文献求助10
7秒前
7秒前
zx完成签到,获得积分10
8秒前
第七个星球完成签到,获得积分10
8秒前
搜集达人应助xh采纳,获得10
8秒前
9秒前
求助人员应助pax采纳,获得10
9秒前
青菜发布了新的文献求助10
9秒前
9秒前
Thi发布了新的文献求助10
10秒前
yby完成签到,获得积分10
10秒前
10秒前
yaoyaoyac完成签到,获得积分10
10秒前
Liuuuu发布了新的文献求助10
10秒前
10秒前
勇yi发布了新的文献求助10
10秒前
coco完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271