Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning

人工智能 计算机科学 支持向量机 特征(语言学) 模式识别(心理学) 深度学习 卷积神经网络 接收机工作特性 特征向量 乳腺癌 乳腺超声检查 水准点(测量) 乳腺摄影术 机器学习 癌症 医学 哲学 语言学 大地测量学 内科学 地理
作者
Jihye Baek,Avice M. O’Connell,Kevin J. Parker
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (4): 045013-045013 被引量:6
标识
DOI:10.1088/2632-2153/ac9bcc
摘要

The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature-based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease-specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log-compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and each feature's data point in multiparametric space. The distance can quantitatively assess a lesion and suggest the probability of malignancy that is color-coded and overlaid onto B-mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and Breast Imaging Reporting and Data System enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zzz发布了新的文献求助10
刚刚
刚刚
1秒前
maomao201026发布了新的文献求助10
1秒前
yan123完成签到,获得积分10
1秒前
共享精神应助chai采纳,获得10
1秒前
Apricity应助wuxunxun2015采纳,获得10
1秒前
1秒前
tina完成签到,获得积分10
2秒前
科研顺利发布了新的文献求助10
3秒前
yang123发布了新的文献求助10
3秒前
4秒前
zzz发布了新的文献求助10
4秒前
熊猫发布了新的文献求助10
4秒前
4秒前
www发布了新的文献求助10
5秒前
5秒前
琳67发布了新的文献求助10
5秒前
cult发布了新的文献求助10
5秒前
明理飞风完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
FashionBoy应助肖紫若采纳,获得10
7秒前
lelele发布了新的文献求助10
7秒前
AnasYusuf发布了新的文献求助30
7秒前
kk发布了新的文献求助10
7秒前
科目三应助陈艺鹏采纳,获得10
7秒前
7秒前
科研通AI6应助神奇小药丸采纳,获得10
7秒前
8秒前
活力砖家完成签到,获得积分10
8秒前
8秒前
jiysh发布了新的文献求助10
9秒前
guojingjing发布了新的文献求助10
9秒前
邓敬燃发布了新的文献求助10
10秒前
10秒前
等风等你完成签到,获得积分10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592