Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning

人工智能 计算机科学 支持向量机 特征(语言学) 模式识别(心理学) 深度学习 卷积神经网络 接收机工作特性 特征向量 乳腺癌 乳腺超声检查 水准点(测量) 乳腺摄影术 机器学习 癌症 医学 哲学 语言学 大地测量学 内科学 地理
作者
Jihye Baek,Avice M. O’Connell,Kevin J. Parker
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (4): 045013-045013 被引量:6
标识
DOI:10.1088/2632-2153/ac9bcc
摘要

The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature-based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease-specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log-compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and each feature's data point in multiparametric space. The distance can quantitatively assess a lesion and suggest the probability of malignancy that is color-coded and overlaid onto B-mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and Breast Imaging Reporting and Data System enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助马老师采纳,获得10
刚刚
星辰大海应助1820采纳,获得20
1秒前
周周发布了新的文献求助10
2秒前
ZYH发布了新的文献求助10
2秒前
Phil发布了新的文献求助10
2秒前
2秒前
方园发布了新的文献求助50
3秒前
开心幻巧发布了新的文献求助10
4秒前
7秒前
ssy关注了科研通微信公众号
7秒前
ncycg发布了新的文献求助10
7秒前
8秒前
周周完成签到,获得积分10
9秒前
柒辞完成签到,获得积分10
10秒前
哈哈哈发布了新的文献求助30
11秒前
方园完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
小杜完成签到 ,获得积分10
16秒前
如晴发布了新的文献求助20
17秒前
严庆完成签到,获得积分10
17秒前
英姑应助wzy采纳,获得10
17秒前
18秒前
开心幻巧完成签到,获得积分10
18秒前
eric888应助小豪采纳,获得200
19秒前
19秒前
19秒前
情怀应助xingxing采纳,获得10
20秒前
田田完成签到 ,获得积分10
21秒前
23秒前
辉辉发布了新的文献求助10
24秒前
mm发布了新的文献求助10
24秒前
不吃香菇发布了新的文献求助10
24秒前
蓬蓬完成签到,获得积分10
25秒前
25秒前
1820发布了新的文献求助20
25秒前
26秒前
26秒前
俊逸千山发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675220
求助须知:如何正确求助?哪些是违规求助? 4944256
关于积分的说明 15152011
捐赠科研通 4834395
什么是DOI,文献DOI怎么找? 2589462
邀请新用户注册赠送积分活动 1543115
关于科研通互助平台的介绍 1501056