亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning

人工智能 计算机科学 支持向量机 特征(语言学) 模式识别(心理学) 深度学习 卷积神经网络 接收机工作特性 特征向量 乳腺癌 乳腺超声检查 水准点(测量) 乳腺摄影术 机器学习 癌症 医学 哲学 语言学 大地测量学 内科学 地理
作者
Jihye Baek,Avice M. O’Connell,Kevin J. Parker
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (4): 045013-045013 被引量:6
标识
DOI:10.1088/2632-2153/ac9bcc
摘要

The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature-based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease-specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log-compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and each feature's data point in multiparametric space. The distance can quantitatively assess a lesion and suggest the probability of malignancy that is color-coded and overlaid onto B-mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and Breast Imaging Reporting and Data System enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香豆素完成签到 ,获得积分10
2秒前
你是我的唯一完成签到 ,获得积分10
6秒前
Gsrr完成签到 ,获得积分10
7秒前
铁妞妞是土猫完成签到,获得积分20
8秒前
沉默的西牛完成签到,获得积分10
9秒前
9秒前
花生王子完成签到 ,获得积分0
10秒前
Jasper应助冰汤葫芦采纳,获得20
12秒前
14秒前
18秒前
OvO_4577完成签到,获得积分10
24秒前
21_xxrr完成签到 ,获得积分10
25秒前
清新的夜蕾完成签到 ,获得积分10
26秒前
北北完成签到,获得积分10
26秒前
27秒前
小二郎应助xiang采纳,获得10
28秒前
31秒前
冉亦完成签到,获得积分10
31秒前
卡卡东完成签到 ,获得积分10
43秒前
cao完成签到,获得积分10
43秒前
木棉完成签到,获得积分10
43秒前
hhh完成签到 ,获得积分10
45秒前
51秒前
FashionBoy应助我有一壶酒采纳,获得10
51秒前
Plikestudy发布了新的文献求助30
53秒前
科研通AI6.1应助Okanryo采纳,获得10
53秒前
55秒前
丸子完成签到 ,获得积分10
57秒前
59秒前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
科目三应助LY采纳,获得10
1分钟前
1分钟前
xiang发布了新的文献求助10
1分钟前
yangzai完成签到 ,获得积分0
1分钟前
alva发布了新的文献求助10
1分钟前
katata完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779791
求助须知:如何正确求助?哪些是违规求助? 5649870
关于积分的说明 15452355
捐赠科研通 4910851
什么是DOI,文献DOI怎么找? 2642982
邀请新用户注册赠送积分活动 1590635
关于科研通互助平台的介绍 1545094