亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning

人工智能 计算机科学 支持向量机 特征(语言学) 模式识别(心理学) 深度学习 卷积神经网络 接收机工作特性 特征向量 乳腺癌 乳腺超声检查 水准点(测量) 乳腺摄影术 机器学习 癌症 医学 哲学 语言学 大地测量学 内科学 地理
作者
Jihye Baek,Avice M. O’Connell,Kevin J. Parker
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (4): 045013-045013 被引量:6
标识
DOI:10.1088/2632-2153/ac9bcc
摘要

The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature-based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease-specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log-compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and each feature's data point in multiparametric space. The distance can quantitatively assess a lesion and suggest the probability of malignancy that is color-coded and overlaid onto B-mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and Breast Imaging Reporting and Data System enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗一刀完成签到,获得积分20
4秒前
10秒前
14秒前
jing发布了新的文献求助10
15秒前
16秒前
19秒前
23秒前
火星上的幻梦完成签到,获得积分10
36秒前
zyjsunye完成签到 ,获得积分10
36秒前
一一完成签到,获得积分10
48秒前
jing完成签到,获得积分20
49秒前
充电宝应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
诚心雪晴完成签到 ,获得积分10
1分钟前
Owen应助Re采纳,获得10
1分钟前
1分钟前
Re发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
su完成签到 ,获得积分10
2分钟前
阿里完成签到,获得积分10
2分钟前
阿里发布了新的文献求助30
2分钟前
3分钟前
3分钟前
pengpengyin发布了新的文献求助10
3分钟前
咔敏完成签到,获得积分10
3分钟前
咔敏发布了新的文献求助10
3分钟前
pengpengyin完成签到,获得积分10
3分钟前
4分钟前
小二郎应助七安得安采纳,获得30
4分钟前
平常囧完成签到,获得积分10
4分钟前
李健应助跳跃的小之采纳,获得10
5分钟前
5分钟前
5分钟前
火速阿百川完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
奶油蜜豆卷完成签到,获得积分10
5分钟前
浮曳完成签到,获得积分10
6分钟前
iShine完成签到 ,获得积分10
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064