已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning

人工智能 计算机科学 支持向量机 特征(语言学) 模式识别(心理学) 深度学习 卷积神经网络 接收机工作特性 特征向量 乳腺癌 乳腺超声检查 水准点(测量) 乳腺摄影术 机器学习 癌症 医学 哲学 语言学 大地测量学 内科学 地理
作者
Jihye Baek,Avice M. O’Connell,Kevin J. Parker
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:3 (4): 045013-045013 被引量:6
标识
DOI:10.1088/2632-2153/ac9bcc
摘要

The improved diagnostic accuracy of ultrasound breast examinations remains an important goal. In this study, we propose a biophysical feature-based machine learning method for breast cancer detection to improve the performance beyond a benchmark deep learning algorithm and to furthermore provide a color overlay visual map of the probability of malignancy within a lesion. This overall framework is termed disease-specific imaging. Previously, 150 breast lesions were segmented and classified utilizing a modified fully convolutional network and a modified GoogLeNet, respectively. In this study multiparametric analysis was performed within the contoured lesions. Features were extracted from ultrasound radiofrequency, envelope, and log-compressed data based on biophysical and morphological models. The support vector machine with a Gaussian kernel constructed a nonlinear hyperplane, and we calculated the distance between the hyperplane and each feature's data point in multiparametric space. The distance can quantitatively assess a lesion and suggest the probability of malignancy that is color-coded and overlaid onto B-mode images. Training and evaluation were performed on in vivo patient data. The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve, which is more precise than the performance of radiologists and a deep learning system. Further, the correlation between the probability and Breast Imaging Reporting and Data System enables a quantitative guideline to predict breast cancer. Therefore, we anticipate that the proposed framework can help radiologists achieve more accurate and convenient breast cancer classification and detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiang_tian完成签到,获得积分10
1秒前
思源应助好眠哈密瓜采纳,获得10
1秒前
Lagom完成签到,获得积分10
2秒前
阿俊完成签到 ,获得积分10
3秒前
JamesPei应助细腻的冷卉采纳,获得10
3秒前
5秒前
6秒前
lsc完成签到 ,获得积分10
8秒前
Rocsoar发布了新的文献求助10
9秒前
13秒前
13秒前
彧辰完成签到 ,获得积分10
16秒前
16秒前
ding应助Rocsoar采纳,获得10
17秒前
廖智勇发布了新的文献求助10
18秒前
Feren发布了新的文献求助30
18秒前
呆梨医生完成签到,获得积分10
19秒前
李健应助好眠哈密瓜采纳,获得30
19秒前
顾矜应助专注酸奶采纳,获得10
22秒前
羊羊发布了新的文献求助10
22秒前
小曹发布了新的文献求助10
23秒前
努力地小夏完成签到,获得积分10
24秒前
搞怪的又蓝完成签到,获得积分10
25秒前
FOD完成签到 ,获得积分10
28秒前
Feren完成签到,获得积分10
30秒前
好运来完成签到 ,获得积分10
31秒前
31秒前
33秒前
35秒前
35秒前
BowieHuang应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
帅气善斓应助科研通管家采纳,获得10
35秒前
YifanWang应助科研通管家采纳,获得10
35秒前
YifanWang应助科研通管家采纳,获得10
35秒前
帅气善斓应助科研通管家采纳,获得10
35秒前
36秒前
36秒前
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723263
求助须知:如何正确求助?哪些是违规求助? 5275470
关于积分的说明 15298353
捐赠科研通 4871863
什么是DOI,文献DOI怎么找? 2616280
邀请新用户注册赠送积分活动 1566091
关于科研通互助平台的介绍 1523007