阳极
材料科学
离子
高熵合金
煅烧
化学工程
热力学
化学
合金
物理化学
冶金
电极
催化作用
物理
工程类
有机化学
生物化学
作者
Xinfeng Wang,Guangfa Liu,Cai Tang,Hailin Tang,Weiyi Zhang,Zhicheng Ju,Jiangmin Jiang,Quanchao Zhuang,Yanhua Cui
标识
DOI:10.1016/j.jallcom.2022.167889
摘要
High-entropy materials are recently attracted significant attention due to their variability of composition and entropy stabilizing phase structure. However, the current mainstream synthesis methods of high-entropy materials require high-energy ball milling and calcination, which limits their further generalization. In this work, a new class of high-entropy perovskite fluorides (HEPFs) as an anode material using for LIBs is reported. In particular, a high-entropy fluoride of KMgMnFeCoNiF3 (TM5) and a series of medium-entropy fluorides (TM4) including KMnFeCoNiF3 (TM4-Mg), KMgFeCoNiF3 (TM4-Mn), KMgMnCoNiF3 (TM4-Fe), KMgMnFeNiF3 (TM4-Co), and KMgMnFeCoF3 (TM4-Ni) are prepared by a facile ball milling with hydrothermal method. Interestingly, the TM5 electrode shows better cycling performance (120 mAh g−1 at 2 A g−1 over 1000 cycles with ∼99% coulombic efficiency) and rate performance (472–57 mAh g−1 at 0.1–3.2 A g−1 current densities) than TM4. The key to such improvement depends on the high-entropy effect together with the synergistic effects of multiple electroactive redox centers. It is believed that this work can provide a new idea for the design and synthesis of high-entropy perovskite materials in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI