劈形算符
组合数学
有界函数
领域(数学分析)
欧米茄
边界(拓扑)
物理
数学
数学分析
量子力学
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2211.00624
摘要
We prove two new functional inequalities of the forms\[ \int_G \varphi (\psi - \overline{\psi}) \leq \frac{1}{a}\int_G \psi \ln \left(\frac{\;\psi\;}{ \overline{\psi}}\right) + \frac{a}{4\beta_0} \left\{ \int_G \psi \right\}\int_G|\nabla \varphi|^2 \] and \[ \int_G \psi \ln \left(\frac{\;\psi\;}{ \overline{\psi}}\right) \leq \frac{1}{\beta_0}\left\{ \int_G \psi \right\}\int_G |\nabla \ln(\psi)|^2 \] for any finitely connected, bounded $C^2$-domain $G \subseteq \mathbb{R}^2$, a constant $\beta_0 > 0$, any $a > 0$ and sufficiently regular functions $\varphi$, $\psi$. We then illustrate their usefulness by proving long time stabilization and eventual smoothness properties for certain generalized solutions to the chemotaxis-Navier-Stokes system\[ \left\{\;\; \begin{aligned} n_t + u \cdot \nabla n &\;\;=\;\; \Delta n - \nabla \cdot (nS(x,n,c) \nabla c), \\ c_t + u\cdot \nabla c &\;\;=\;\; \Delta c - n f(c), \\ u_t + (u\cdot \nabla) u &\;\;=\;\; \Delta u + \nabla P + n \nabla \phi, \;\;\;\;\;\; \nabla \cdot u = 0, \end{aligned} \right. \] on a smooth, bounded, convex domain $\Omega \subseteq \mathbb{R}^2$ with no-flux boundary conditions for $n$ and $c$ as well as a Dirichlet boundary condition for $u$. We further allow for a general chemotactic sensitivity $S$ attaining values in $\mathbb{R}^{2\times 2}$ as opposed to a scalar one.
科研通智能强力驱动
Strongly Powered by AbleSci AI