Dietary metabolic signatures and cardiometabolic risk

医学 食品集团 糖尿病 2型糖尿病 危险系数 内科学 代谢物 弗雷明翰风险评分 体质指数 弗雷明翰心脏研究 置信区间 生理学 内分泌学 疾病 环境卫生
作者
Ravi Shah,Lyn M. Steffen,Matthew Nayor,Jared P. Reis,David R. Jacobs,Norrina B. Allen,Donald M. Lloyd‐Jones,Katie A. Meyer,Joanne B. Cole,Paolo Piaggi,Ramachandran S. Vasan,Clary B. Clish,Venkatesh L. Murthy
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (7): 557-569 被引量:20
标识
DOI:10.1093/eurheartj/ehac446
摘要

Abstract Aims Observational studies of diet in cardiometabolic-cardiovascular disease (CM-CVD) focus on self-reported consumption of food or dietary pattern, with limited information on individual metabolic responses to dietary intake linked to CM-CVD. Here, machine learning approaches were used to identify individual metabolic patterns related to diet and relation to long-term CM-CVD in early adulthood. Methods and results In 2259 White and Black adults (age 32.1 ± 3.6 years, 45% women, 44% Black) in the Coronary Artery Risk Development in Young Adults (CARDIA) study, multivariate models were employed to identify metabolite signatures of food group and composite dietary intake across 17 food groups, 2 nutrient groups, and healthy eating index-2015 (HEI2015) diet quality score. A broad array of metabolites associated with diet were uncovered, reflecting food-related components/catabolites (e.g. fish and long-chain unsaturated triacylglycerols), interactions with host features (microbiome), or pathways broadly implicated in CM-CVD (e.g. ceramide/sphingomyelin lipid metabolism). To integrate diet with metabolism, penalized machine learning models were used to define a metabolite signature linked to a putative CM-CVD-adverse diet (e.g. high in red/processed meat, refined grains), which was subsequently associated with long-term diabetes and CVD risk numerically more strongly than HEI2015 in CARDIA [e.g. diabetes: standardized hazard ratio (HR): 1.62, 95% confidence interval (CI): 1.32–1.97, P < 0.0001; CVD: HR: 1.55, 95% CI: 1.12–2.14, P = 0.008], with associations replicated for diabetes (P < 0.0001) in the Framingham Heart Study. Conclusion Metabolic signatures of diet are associated with long-term CM-CVD independent of lifestyle and traditional risk factors. Metabolomics improves precision to identify adverse consequences and pathways of diet-related CM-CVD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空蓝发布了新的文献求助10
4秒前
酷波er应助旧旧采纳,获得10
12秒前
司空蓝完成签到,获得积分10
13秒前
wanci应助科科科研采纳,获得10
14秒前
田様应助zhang采纳,获得10
14秒前
17秒前
Iridesent0v0完成签到,获得积分10
17秒前
Jasper应助happy采纳,获得10
17秒前
21秒前
无花果应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
25秒前
27秒前
星辰雪顶发布了新的文献求助10
27秒前
好好好发布了新的文献求助10
27秒前
28秒前
happy发布了新的文献求助10
29秒前
31秒前
zhang发布了新的文献求助10
32秒前
33秒前
好好好完成签到,获得积分10
33秒前
嘉人完成签到 ,获得积分10
35秒前
35秒前
li2000722完成签到,获得积分10
36秒前
36秒前
yyy发布了新的文献求助10
37秒前
37秒前
40秒前
小瑞发布了新的文献求助10
41秒前
42秒前
demoliu发布了新的文献求助10
45秒前
谦让的芷巧完成签到,获得积分10
46秒前
goldfish完成签到,获得积分10
46秒前
47秒前
Fan发布了新的文献求助10
48秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775527
求助须知:如何正确求助?哪些是违规求助? 3321201
关于积分的说明 10203903
捐赠科研通 3036017
什么是DOI,文献DOI怎么找? 1665907
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766