NIMG-67. MULTI-PARAMETRIC MRI-BASED MACHINE LEARNING ANALYSIS FOR PREDICTION OF NEOPLASTIC INFILTRATION AND RECURRENCE IN PATIENTS WITH GLIOBLASTOMA: UPDATES FROM THE MULTI-INSTITUTIONAL RESPOND CONSORTIUM

医学 流体衰减反转恢复 胶质母细胞瘤 无线电技术 概化理论 队列 人工智能 磁共振成像 肿瘤科 放射科 内科学 医学物理学 机器学习 计算机科学 心理学 发展心理学 癌症研究
作者
Hamed Akbari,Suyash Mohan,José García,Anahita Fathi Kazerooni,Chiharu Sako,Spyridon Bakas,Michel Bilello,Stephen Bagley,Ujjwal Baid,Steven Brem,Robert A. Lustig,MacLean P. Nasrallah,Donald M. O’Rourke,Jill S. Barnholtz‐Sloan,Chaitra Badve,Andrew Sloan,Rajan Jain,Matthew Lee,Arnab Chakravarti,Joshua D. Palmer,William D. Taylor,Santiago Cepeda,Adam P. Dicker,Adam E. Flanders,Wenyin Shi,Gaurav Shukla,Evan Calabrese,Jeffrey D. Rudie,Javier Villanueva-Meyer,Pamela LaMontagne,Daniel Marcus,Carmen Balañá,Jaume Capellades,Josep Puig,Murat Ak,Rivka R. Colen,Sung Soo Ahn,Jong Hee Chang,Yoon Seong Choi,Seung‐Koo Lee,Brent Griffith,Laila Poisson,Lisa R. Rogers,Thomas C. Booth,Abhishek Mahajan,Benedikt Wiestler,Christos Davatzikos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:24 (Supplement_7): vii179-vii180 被引量:1
标识
DOI:10.1093/neuonc/noac209.685
摘要

Abstract PURPOSE Glioblastoma is extremely infiltrative with malignant cells extending beyond the enhancing rim where recurrence inevitably occurs, despite aggressive multimodal therapy. We hypothesize that important characteristics of peritumoral tissue heterogeneity captured and analyzed by multi-parametric MRI and artificial intelligence (AI) methods are generalizable in the updated multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium and predictive of neoplastic infiltration and future recurrence. METHODS We used the most recent update of the ReSPOND consortium to evaluate and further refine generalizability of our methods with different scanners and acquisition settings. 179 de novo glioblastoma patients with available T1, T1Gd, T2, T2-FLAIR, and ADC sequences at pre-resection baseline and after complete resection with subsequent pathology-confirmed recurrence were included. To establish generalizability of the predictive models, training and testing of the refined AI model was performed through Leave-One-Institution-Out-Cross-Validation schema. The multi-institutional cohort consisted of the Hospital of the University of Pennsylvania (UPenn, 124), Case Western Reserve University/University Hospitals (CWRU/UH, 27), New York University (NYU, 13), Ohio State University (OSU, 13), and University Hospital Río Hortega (RH, 2). Features extracted from pre-resection MRI were used to build the model predicting the spatial pattern of subsequent tumor recurrence. These predictions were evaluated against regions of pathology-confirmed post-resection recurrence. RESULTS Our model predicted the locations that later harbored tumor recurrence with overall odds ratio (99% CI)/AUC (99% CI), 12.0(11.8-12.2)/0.80(0.76-0.85), and per institute, CWRU/UH, 11.0(10.7-11.3)/0.80 (0.64-0.97); NYU, 7.0(6.7-7.3)/0.78(0.56-1.00); OSU, 18.3(17.5-19.1)/0.83(0.54-1.00); RH, 40.0(35.3-45.5)/0.93(0.00-1.00); UPenn, 8.00(7.7-8.3)/0.80(0.75-0.84). CONCLUSION This study provides extensive multi-institutional validated evidence that machine learning tools can identify peritumoral neoplastic infiltration and predict location of future recurrence, by decrypting the MRI signal heterogeneity in peritumoral tissue. Our analyses leveraged the unique dataset of the ReSPOND consortium, which aims to develop and validate AI-based biomarkers for individualized prediction and prognostication and establish generalizability in a multi-institutional setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独问旋完成签到,获得积分10
刚刚
yuiip发布了新的文献求助10
刚刚
1秒前
ZOEzoe发布了新的文献求助30
2秒前
研友_VZG7GZ应助苍耳采纳,获得30
3秒前
3秒前
yangyang发布了新的文献求助10
3秒前
tiasn关注了科研通微信公众号
3秒前
Unshouable发布了新的文献求助10
3秒前
如意冰棍完成签到 ,获得积分10
3秒前
4秒前
4秒前
OO圈圈发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
保持好心情完成签到 ,获得积分10
5秒前
小盆呐完成签到,获得积分10
7秒前
Accept关注了科研通微信公众号
7秒前
实验大牛完成签到,获得积分10
7秒前
SYLH应助嗯嗯采纳,获得30
7秒前
莫里完成签到,获得积分10
7秒前
独特的向日葵完成签到,获得积分10
7秒前
lz发布了新的文献求助10
8秒前
Enzo发布了新的文献求助10
8秒前
8秒前
菠菜发布了新的文献求助200
8秒前
格物致知发布了新的文献求助10
9秒前
动听锦程发布了新的文献求助10
9秒前
10秒前
wdy111应助左丘以云采纳,获得20
10秒前
10秒前
10秒前
糊辣鱼完成签到 ,获得积分10
11秒前
SYLH应助Ridley采纳,获得10
11秒前
12秒前
TWOTP完成签到,获得积分10
12秒前
Asystasia7完成签到,获得积分10
12秒前
12秒前
CATH发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653