NIMG-67. MULTI-PARAMETRIC MRI-BASED MACHINE LEARNING ANALYSIS FOR PREDICTION OF NEOPLASTIC INFILTRATION AND RECURRENCE IN PATIENTS WITH GLIOBLASTOMA: UPDATES FROM THE MULTI-INSTITUTIONAL RESPOND CONSORTIUM

医学 流体衰减反转恢复 胶质母细胞瘤 无线电技术 概化理论 队列 人工智能 磁共振成像 肿瘤科 放射科 内科学 医学物理学 机器学习 计算机科学 心理学 发展心理学 癌症研究
作者
Hamed Akbari,Suyash Mohan,José García,Anahita Fathi Kazerooni,Chiharu Sako,Spyridon Bakas,Michel Bilello,Stephen Bagley,Ujjwal Baid,Steven Brem,Robert A. Lustig,MacLean P. Nasrallah,Donald M. O’Rourke,Jill S. Barnholtz‐Sloan,Chaitra Badve,Andrew Sloan,Rajan Jain,Matthew Lee,Arnab Chakravarti,Joshua D. Palmer,William D. Taylor,Santiago Cepeda,Adam P. Dicker,Adam E. Flanders,Wenyin Shi,Gaurav Shukla,Evan Calabrese,Jeffrey D. Rudie,Javier Villanueva-Meyer,Pamela LaMontagne,Daniel Marcus,Carmen Balañá,Jaume Capellades,Josep Puig,Murat Ak,Rivka R. Colen,Sung Soo Ahn,Jong Hee Chang,Yoon Seong Choi,Seung‐Koo Lee,Brent Griffith,Laila Poisson,Lisa R. Rogers,Thomas C. Booth,Abhishek Mahajan,Benedikt Wiestler,Christos Davatzikos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:24 (Supplement_7): vii179-vii180 被引量:1
标识
DOI:10.1093/neuonc/noac209.685
摘要

Abstract PURPOSE Glioblastoma is extremely infiltrative with malignant cells extending beyond the enhancing rim where recurrence inevitably occurs, despite aggressive multimodal therapy. We hypothesize that important characteristics of peritumoral tissue heterogeneity captured and analyzed by multi-parametric MRI and artificial intelligence (AI) methods are generalizable in the updated multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium and predictive of neoplastic infiltration and future recurrence. METHODS We used the most recent update of the ReSPOND consortium to evaluate and further refine generalizability of our methods with different scanners and acquisition settings. 179 de novo glioblastoma patients with available T1, T1Gd, T2, T2-FLAIR, and ADC sequences at pre-resection baseline and after complete resection with subsequent pathology-confirmed recurrence were included. To establish generalizability of the predictive models, training and testing of the refined AI model was performed through Leave-One-Institution-Out-Cross-Validation schema. The multi-institutional cohort consisted of the Hospital of the University of Pennsylvania (UPenn, 124), Case Western Reserve University/University Hospitals (CWRU/UH, 27), New York University (NYU, 13), Ohio State University (OSU, 13), and University Hospital Río Hortega (RH, 2). Features extracted from pre-resection MRI were used to build the model predicting the spatial pattern of subsequent tumor recurrence. These predictions were evaluated against regions of pathology-confirmed post-resection recurrence. RESULTS Our model predicted the locations that later harbored tumor recurrence with overall odds ratio (99% CI)/AUC (99% CI), 12.0(11.8-12.2)/0.80(0.76-0.85), and per institute, CWRU/UH, 11.0(10.7-11.3)/0.80 (0.64-0.97); NYU, 7.0(6.7-7.3)/0.78(0.56-1.00); OSU, 18.3(17.5-19.1)/0.83(0.54-1.00); RH, 40.0(35.3-45.5)/0.93(0.00-1.00); UPenn, 8.00(7.7-8.3)/0.80(0.75-0.84). CONCLUSION This study provides extensive multi-institutional validated evidence that machine learning tools can identify peritumoral neoplastic infiltration and predict location of future recurrence, by decrypting the MRI signal heterogeneity in peritumoral tissue. Our analyses leveraged the unique dataset of the ReSPOND consortium, which aims to develop and validate AI-based biomarkers for individualized prediction and prognostication and establish generalizability in a multi-institutional setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆滑的铁勺完成签到,获得积分10
刚刚
刚刚
刚刚
zhangting完成签到,获得积分10
1秒前
AAAAAAAAAAA完成签到,获得积分10
1秒前
vvvvvvv完成签到,获得积分10
1秒前
1秒前
wanyanjin应助1111采纳,获得10
1秒前
gaos发布了新的文献求助10
2秒前
小吴完成签到,获得积分10
3秒前
迟大猫应助Star1983采纳,获得10
3秒前
chinning完成签到,获得积分10
4秒前
Mon_zh发布了新的文献求助20
4秒前
4秒前
漂亮送终完成签到,获得积分10
4秒前
朴素篮球发布了新的文献求助10
5秒前
天才完成签到 ,获得积分10
5秒前
不喝可乐发布了新的文献求助10
5秒前
6秒前
皮尤尤发布了新的文献求助10
6秒前
7秒前
道中道完成签到,获得积分10
8秒前
8秒前
知之然完成签到,获得积分10
8秒前
研友_n2QP2L完成签到,获得积分10
8秒前
Lucas应助安静听白采纳,获得10
8秒前
CC发布了新的文献求助10
8秒前
星辰大海应助系统提示采纳,获得10
9秒前
9秒前
sss完成签到,获得积分10
9秒前
9秒前
板凳完成签到,获得积分10
10秒前
单纯访枫发布了新的文献求助30
10秒前
bin0920发布了新的文献求助10
10秒前
aaaaaa完成签到,获得积分10
11秒前
tangsuyun完成签到,获得积分20
11秒前
MADKAI发布了新的文献求助50
11秒前
大方小白完成签到,获得积分10
11秒前
xiaokezhang发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678