NIMG-67. MULTI-PARAMETRIC MRI-BASED MACHINE LEARNING ANALYSIS FOR PREDICTION OF NEOPLASTIC INFILTRATION AND RECURRENCE IN PATIENTS WITH GLIOBLASTOMA: UPDATES FROM THE MULTI-INSTITUTIONAL RESPOND CONSORTIUM

医学 流体衰减反转恢复 胶质母细胞瘤 无线电技术 概化理论 队列 人工智能 磁共振成像 肿瘤科 放射科 内科学 医学物理学 机器学习 计算机科学 心理学 发展心理学 癌症研究
作者
Hamed Akbari,Suyash Mohan,José García,Anahita Fathi Kazerooni,Chiharu Sako,Spyridon Bakas,Michel Bilello,Stephen Bagley,Ujjwal Baid,Steven Brem,Robert A. Lustig,MacLean P. Nasrallah,Donald M. O’Rourke,Jill S. Barnholtz‐Sloan,Chaitra Badve,Andrew Sloan,Rajan Jain,Matthew Lee,Arnab Chakravarti,Joshua D. Palmer,William D. Taylor,Santiago Cepeda,Adam P. Dicker,Adam E. Flanders,Wenyin Shi,Gaurav Shukla,Evan Calabrese,Jeffrey D. Rudie,Javier Villanueva-Meyer,Pamela LaMontagne,Daniel Marcus,Carmen Balañá,Jaume Capellades,Josep Puig,Murat Ak,Rivka R. Colen,Sung Soo Ahn,Jong Hee Chang,Yoon Seong Choi,Seung‐Koo Lee,Brent Griffith,Laila Poisson,Lisa R. Rogers,Thomas C. Booth,Abhishek Mahajan,Benedikt Wiestler,Christos Davatzikos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:24 (Supplement_7): vii179-vii180 被引量:1
标识
DOI:10.1093/neuonc/noac209.685
摘要

Abstract PURPOSE Glioblastoma is extremely infiltrative with malignant cells extending beyond the enhancing rim where recurrence inevitably occurs, despite aggressive multimodal therapy. We hypothesize that important characteristics of peritumoral tissue heterogeneity captured and analyzed by multi-parametric MRI and artificial intelligence (AI) methods are generalizable in the updated multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium and predictive of neoplastic infiltration and future recurrence. METHODS We used the most recent update of the ReSPOND consortium to evaluate and further refine generalizability of our methods with different scanners and acquisition settings. 179 de novo glioblastoma patients with available T1, T1Gd, T2, T2-FLAIR, and ADC sequences at pre-resection baseline and after complete resection with subsequent pathology-confirmed recurrence were included. To establish generalizability of the predictive models, training and testing of the refined AI model was performed through Leave-One-Institution-Out-Cross-Validation schema. The multi-institutional cohort consisted of the Hospital of the University of Pennsylvania (UPenn, 124), Case Western Reserve University/University Hospitals (CWRU/UH, 27), New York University (NYU, 13), Ohio State University (OSU, 13), and University Hospital Río Hortega (RH, 2). Features extracted from pre-resection MRI were used to build the model predicting the spatial pattern of subsequent tumor recurrence. These predictions were evaluated against regions of pathology-confirmed post-resection recurrence. RESULTS Our model predicted the locations that later harbored tumor recurrence with overall odds ratio (99% CI)/AUC (99% CI), 12.0(11.8-12.2)/0.80(0.76-0.85), and per institute, CWRU/UH, 11.0(10.7-11.3)/0.80 (0.64-0.97); NYU, 7.0(6.7-7.3)/0.78(0.56-1.00); OSU, 18.3(17.5-19.1)/0.83(0.54-1.00); RH, 40.0(35.3-45.5)/0.93(0.00-1.00); UPenn, 8.00(7.7-8.3)/0.80(0.75-0.84). CONCLUSION This study provides extensive multi-institutional validated evidence that machine learning tools can identify peritumoral neoplastic infiltration and predict location of future recurrence, by decrypting the MRI signal heterogeneity in peritumoral tissue. Our analyses leveraged the unique dataset of the ReSPOND consortium, which aims to develop and validate AI-based biomarkers for individualized prediction and prognostication and establish generalizability in a multi-institutional setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
4秒前
4秒前
DJ_Tokyo完成签到,获得积分0
8秒前
清华完成签到 ,获得积分10
9秒前
bae完成签到 ,获得积分10
10秒前
菜鸟学习完成签到 ,获得积分10
13秒前
逢场作戱__完成签到 ,获得积分10
13秒前
杨一乐完成签到,获得积分10
20秒前
健壮可冥完成签到 ,获得积分10
21秒前
有魅力的仙人掌完成签到 ,获得积分10
22秒前
玉鱼儿完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
27秒前
姚芭蕉完成签到 ,获得积分0
30秒前
愉快的老三完成签到,获得积分10
30秒前
TUTU完成签到 ,获得积分10
33秒前
左右完成签到 ,获得积分10
34秒前
楚寅完成签到 ,获得积分10
41秒前
奇奇怪怪的大鱼完成签到,获得积分10
42秒前
43秒前
量子星尘发布了新的文献求助10
47秒前
出厂价完成签到,获得积分10
47秒前
呆萌的蚂蚁完成签到 ,获得积分10
47秒前
董耀文完成签到,获得积分10
50秒前
氟锑酸完成签到 ,获得积分10
50秒前
lunhui6453完成签到 ,获得积分10
52秒前
Yi完成签到,获得积分10
53秒前
王继完成签到,获得积分10
53秒前
53秒前
卡片完成签到,获得积分10
55秒前
虚幻念寒完成签到 ,获得积分10
55秒前
胡思乱想完成签到,获得积分10
57秒前
58秒前
hahaha6789y完成签到,获得积分10
58秒前
cl完成签到,获得积分10
1分钟前
sheep完成签到,获得积分10
1分钟前
maybe完成签到,获得积分10
1分钟前
秦含光完成签到,获得积分10
1分钟前
Mo完成签到,获得积分10
1分钟前
hahaha2完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418566
求助须知:如何正确求助?哪些是违规求助? 4534257
关于积分的说明 14143326
捐赠科研通 4450472
什么是DOI,文献DOI怎么找? 2441268
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410417