NIMG-67. MULTI-PARAMETRIC MRI-BASED MACHINE LEARNING ANALYSIS FOR PREDICTION OF NEOPLASTIC INFILTRATION AND RECURRENCE IN PATIENTS WITH GLIOBLASTOMA: UPDATES FROM THE MULTI-INSTITUTIONAL RESPOND CONSORTIUM

医学 流体衰减反转恢复 胶质母细胞瘤 无线电技术 概化理论 队列 人工智能 磁共振成像 肿瘤科 放射科 内科学 医学物理学 机器学习 计算机科学 心理学 发展心理学 癌症研究
作者
Hamed Akbari,Suyash Mohan,José García,Anahita Fathi Kazerooni,Chiharu Sako,Spyridon Bakas,Michel Bilello,Stephen Bagley,Ujjwal Baid,Steven Brem,Robert A. Lustig,MacLean P. Nasrallah,Donald M. O’Rourke,Jill S. Barnholtz‐Sloan,Chaitra Badve,Andrew Sloan,Rajan Jain,Matthew Lee,Arnab Chakravarti,Joshua D. Palmer,William D. Taylor,Santiago Cepeda,Adam P. Dicker,Adam E. Flanders,Wenyin Shi,Gaurav Shukla,Evan Calabrese,Jeffrey D. Rudie,Javier Villanueva-Meyer,Pamela LaMontagne,Daniel Marcus,Carmen Balañá,Jaume Capellades,Josep Puig,Murat Ak,Rivka R. Colen,Sung Soo Ahn,Jong Hee Chang,Yoon Seong Choi,Seung‐Koo Lee,Brent Griffith,Laila Poisson,Lisa R. Rogers,Thomas C. Booth,Abhishek Mahajan,Benedikt Wiestler,Christos Davatzikos
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:24 (Supplement_7): vii179-vii180 被引量:1
标识
DOI:10.1093/neuonc/noac209.685
摘要

Abstract PURPOSE Glioblastoma is extremely infiltrative with malignant cells extending beyond the enhancing rim where recurrence inevitably occurs, despite aggressive multimodal therapy. We hypothesize that important characteristics of peritumoral tissue heterogeneity captured and analyzed by multi-parametric MRI and artificial intelligence (AI) methods are generalizable in the updated multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium and predictive of neoplastic infiltration and future recurrence. METHODS We used the most recent update of the ReSPOND consortium to evaluate and further refine generalizability of our methods with different scanners and acquisition settings. 179 de novo glioblastoma patients with available T1, T1Gd, T2, T2-FLAIR, and ADC sequences at pre-resection baseline and after complete resection with subsequent pathology-confirmed recurrence were included. To establish generalizability of the predictive models, training and testing of the refined AI model was performed through Leave-One-Institution-Out-Cross-Validation schema. The multi-institutional cohort consisted of the Hospital of the University of Pennsylvania (UPenn, 124), Case Western Reserve University/University Hospitals (CWRU/UH, 27), New York University (NYU, 13), Ohio State University (OSU, 13), and University Hospital Río Hortega (RH, 2). Features extracted from pre-resection MRI were used to build the model predicting the spatial pattern of subsequent tumor recurrence. These predictions were evaluated against regions of pathology-confirmed post-resection recurrence. RESULTS Our model predicted the locations that later harbored tumor recurrence with overall odds ratio (99% CI)/AUC (99% CI), 12.0(11.8-12.2)/0.80(0.76-0.85), and per institute, CWRU/UH, 11.0(10.7-11.3)/0.80 (0.64-0.97); NYU, 7.0(6.7-7.3)/0.78(0.56-1.00); OSU, 18.3(17.5-19.1)/0.83(0.54-1.00); RH, 40.0(35.3-45.5)/0.93(0.00-1.00); UPenn, 8.00(7.7-8.3)/0.80(0.75-0.84). CONCLUSION This study provides extensive multi-institutional validated evidence that machine learning tools can identify peritumoral neoplastic infiltration and predict location of future recurrence, by decrypting the MRI signal heterogeneity in peritumoral tissue. Our analyses leveraged the unique dataset of the ReSPOND consortium, which aims to develop and validate AI-based biomarkers for individualized prediction and prognostication and establish generalizability in a multi-institutional setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
zho发布了新的文献求助10
5秒前
爆米花应助Sandstorm采纳,获得10
7秒前
舒适以山发布了新的文献求助10
8秒前
10秒前
10秒前
VDC应助Dreamer采纳,获得100
10秒前
shinysparrow应助旧事与九月采纳,获得200
11秒前
11秒前
SciGPT应助失眠的海云采纳,获得10
11秒前
搜集达人应助kls采纳,获得10
13秒前
因一完成签到,获得积分10
15秒前
Tin发布了新的文献求助10
17秒前
海晨发布了新的文献求助10
18秒前
这啥呀完成签到,获得积分10
19秒前
我是老大应助豆⑧采纳,获得10
20秒前
NexusExplorer应助Cope采纳,获得30
20秒前
22秒前
Dreamer完成签到,获得积分10
22秒前
22秒前
23秒前
团团圆圆也应助monkey采纳,获得10
24秒前
kls发布了新的文献求助10
27秒前
鳗鱼雪莲完成签到,获得积分10
28秒前
Jane发布了新的文献求助10
29秒前
打打应助研友_ZAxX6n采纳,获得30
32秒前
蓝蓝的腿毛完成签到 ,获得积分10
32秒前
swallow完成签到,获得积分10
32秒前
32秒前
33秒前
33秒前
周大琳发布了新的文献求助10
37秒前
38秒前
一颗星发布了新的文献求助10
38秒前
yuanbao发布了新的文献求助10
38秒前
豆⑧发布了新的文献求助10
40秒前
40秒前
linginging发布了新的文献求助10
41秒前
完美世界应助星禾吾采纳,获得10
41秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351004
求助须知:如何正确求助?哪些是违规求助? 2976541
关于积分的说明 8675492
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673751
邀请新用户注册赠送积分活动 664242