Autonomous intelligent control of earth pressure balance shield machine based on deep reinforcement learning

强化学习 计算机科学 护盾 人工智能 深度学习 领域(数学) 模拟 机器学习 地质学 岩石学 数学 纯数学
作者
Xuan-Yu Liu,Wenshuai Zhang,Cheng Shao,Yudong Wang,Qiu-Mei Cong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106702-106702
标识
DOI:10.1016/j.engappai.2023.106702
摘要

In order to reduce the construction risk caused by human operation error and improve the geological adaptive ability of the shield machine, an autonomous intelligent control method is proposed for shield machine within the framework of interaction–judgment–decision based on Deep Deterministic Policy Gradient (DDPG) deep reinforcement learning in this study. Due to the strong nonlinear relationship between the shield machine's tunneling parameters, this research builds a deep reinforcement learning environment using mechanism model of sealed cabin pressure. DDPG agent model of the shield machine is established to replace the shield machine to interact and train with the geological environment. By minimizing the difference between the target pressure setting value and the sealed cabin pressure value, the dynamic balance between the sealed cabin pressure and the pressure on the excavation surface is realized, and the best strategy is obtained. Through real-time interaction with the geological environment, the method in this paper can dynamically adjust the tunneling parameters, accurately control the sealed cabin pressure, and has a strong geological adaptive ability. By realizing the intelligent decision-making of the tunneling parameters, it greatly improves the independent decision-making ability of the shield machine system, reduces the inaccuracy of human operation, and provides an effective guarantee for the efficient and safe operation of the shield machine. This study applies deep reinforcement learning technology to the control field of earth pressure balance shield machine, promotes AI technology, and provides a new idea for the development of AI construction technology in engineering field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助伶俐的静柏采纳,获得10
刚刚
1秒前
Afffrain完成签到,获得积分10
1秒前
2秒前
3秒前
pyt777完成签到,获得积分10
5秒前
lf发布了新的文献求助10
5秒前
buzhinianjiu完成签到,获得积分10
5秒前
8秒前
tina3058发布了新的文献求助10
8秒前
callmefather发布了新的文献求助10
8秒前
思源应助rrrrrr采纳,获得10
9秒前
打打应助笨笨凡松采纳,获得10
9秒前
GXNU完成签到,获得积分10
9秒前
思源应助sby19采纳,获得10
10秒前
dlfg完成签到,获得积分10
10秒前
所所应助哒哒猪采纳,获得10
10秒前
支支完成签到,获得积分10
11秒前
陈富贵完成签到 ,获得积分10
12秒前
bkagyin应助zjk采纳,获得10
13秒前
14秒前
情怀应助joysa采纳,获得10
14秒前
SYLH应助Abi采纳,获得10
14秒前
16秒前
刘洋完成签到,获得积分10
17秒前
韶安萱发布了新的文献求助10
19秒前
19秒前
Metrix发布了新的文献求助10
19秒前
无花果应助Abi采纳,获得10
19秒前
19秒前
科研通AI5应助brazenness采纳,获得10
20秒前
21秒前
以默发布了新的文献求助10
21秒前
VDC应助经验丰富的菜狗采纳,获得30
21秒前
tmxx发布了新的文献求助10
22秒前
orixero应助DT采纳,获得10
22秒前
24秒前
小星云发布了新的文献求助10
24秒前
冷傲机器猫完成签到,获得积分10
24秒前
Marvin42完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679