Existing community detection methods for attributed multiplex networks focus on exploiting the complementary information from different topologies, while they are paying little attention to the role of attributes. However, we observe that real attributed multiplex networks exhibit two unique features, namely, consistency and homogeneity of node attributes. Therefore, in this paper, we propose a novel method, called ACDM, which is based on these two characteristics of attributes, to detect communities on attributed multiplex networks. Specifically, we extract commonality representation of nodes through the consistency of attributes. The collaboration between the homogeneity of attributes and topology information reveals the particularity representation of nodes. The comprehensive experimental results on real attributed multiplex networks well validate that our method outperforms state-of-the-art methods in most networks.