Near-junction thermal managements of electronics

热导率 数码产品 材料科学 界面热阻 声子 热阻 工程物理 弹道传导 凝聚态物理 热的 热流密度 机械 传热 物理 热力学 电气工程 电子 工程类 复合材料 量子力学
作者
Hua Younan,Yang Shen,Zheng-Lai Tang,Dao-Sheng Tang,Xin Ran,Bing Cao
出处
期刊:Advances in heat transfer 卷期号:: 355-434 被引量:5
标识
DOI:10.1016/bs.aiht.2023.05.004
摘要

Near-junction thermal management of electronics has received a lot of attention in the past decades but there are still many challenges in this area. This chapter provides a comprehensive review of recent developments in this field. The reduction of scale of devices will result in the crossover of heat transport from the diffusive regime to the ballistic regime. Thus, boundary temperature jumps and boundary heat flux slips emerge. A set of predictive models are developed and verified through comparisons with Monte Carlo method, which will be discussed in detail in this chapter. The thermal conductivity of nanostructures will also deviate from their bulk counterparts. Conductivity is found to depend significantly on multiple factors, including characteristic size and geometry, heating conditions, interfacial effects, stress, and electric fields. Various cases are considering for thermal spreading resistance in electronic devices, with particular emphasis on GaN HEMTs in a ballistic-diffusive regime from multiple perspectives. These cases contain the impacts of phonon ballistic effect, phonon dispersion, bias-dependent heat generation, and first-principle-calculated phonon properties on thermal spreading resistance. Finally, the self-heating effect caused by the scattering between the hot carrier and the lattice is analyzed. Research methods for the self-heating effect are introduced, including some theoretical models and electro-thermal simulations. And the methods for controlling the self-heating effect to improve device performance, reliability, and lifespan are given as well. The present chapter mainly presents some of the most recent progresses for near-junction thermal management of electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十九亩哦完成签到,获得积分20
刚刚
yunidesuuu发布了新的文献求助10
1秒前
柒柒发布了新的文献求助10
1秒前
orixero应助surong采纳,获得10
2秒前
3秒前
Owen应助研ZZ采纳,获得10
3秒前
4秒前
激动的猫咪完成签到,获得积分10
5秒前
不苦发布了新的文献求助10
5秒前
Liuliu完成签到,获得积分10
6秒前
yanzu发布了新的文献求助10
7秒前
欣喜的秋灵应助网易乐采纳,获得10
7秒前
9秒前
qazxswedc发布了新的文献求助10
9秒前
10秒前
dudu完成签到,获得积分10
10秒前
11秒前
小林发布了新的文献求助10
12秒前
英姑应助运气爆棚采纳,获得10
12秒前
ding应助张同学采纳,获得10
12秒前
13秒前
14秒前
surong发布了新的文献求助10
14秒前
SciGPT应助阿酷采纳,获得10
14秒前
张大力发布了新的文献求助10
14秒前
15秒前
16秒前
yunidesuuu发布了新的文献求助10
16秒前
smm关注了科研通微信公众号
16秒前
Bodhicia发布了新的文献求助10
17秒前
Progie应助divedown采纳,获得10
18秒前
鱼鱼鱼KYSL发布了新的文献求助10
18秒前
CQ完成签到,获得积分10
19秒前
20秒前
seven完成签到 ,获得积分10
20秒前
yanzu完成签到,获得积分10
20秒前
20秒前
sarah完成签到,获得积分10
22秒前
23秒前
呆呆发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943