材料科学
超级电容器
复合数
电化学
阳极
电极
化学工程
电解质
三元运算
阴极
氧化物
电容
纳米颗粒
纳米技术
复合材料
冶金
计算机科学
工程类
物理化学
化学
程序设计语言
作者
Geerthana Mummoorthi,A. Silambarasan,Manickam Selvaraj,Samuel Lalthazuala Rokhum,M. Navaneethan,Periyasamy Sivakumar,R. Ramesh
标识
DOI:10.1016/j.surfin.2023.103166
摘要
Herein, a 3D/2D/2D of α-Fe2O3/r-GO/GCN composites were synthesized by combined reflux condensation and sonochemical-assisted wet-impregnation techniques. The physicochemical properties of the prepared materials were inspected by various analytical techniques. Morphology analysis techniques of different electron microscopes were employed to confirm the rhombohedral (3D) and two-dimensional (2D) sheets' morphology. The electrochemical behaviour of the as-synthesised electrode materials was assessed for use in a redox electrolyte-based energy storage system. Electrochemical measurements in a 6M KOH solution revealed that the electrode exhibited good supercapacitive behaviour. The 3D/2D/2D -α-Fe2O3/r-GO/GCN composite had a higher capacitance rate of roughly 810 F g−1 than α-Fe2O3 nanoparticles at 1Ag−1. From cyclic stability, ternary composite has good cyclic retention (98.9%) after 10,000 cycles at 10 Ag−1. The surface characteristics of metal oxide nanostructures and the efficient conductive networks of r-GO and GCN sheets are primarily responsible for the ternary α-Fe2O3/r-GO/GCN composite's superior electrochemical performance. Asymmetric supercapacitor (ASC) devices were constructed using 3D/2D/2D anodic material and activated carbon as a cathode material with a power density of 929 Wkg−1, energy density of 40 WhKg−1, and 92 % of capacity retention.
科研通智能强力驱动
Strongly Powered by AbleSci AI