Structural nonlinear damage identification based on the information distance of GNPAX/GARCH model and its experimental study

异方差 非线性系统 ARCH模型 结构健康监测 自回归模型 计算机科学 非线性自回归外生模型 稳健性(进化) 算法 数学 工程类 计量经济学 结构工程 波动性(金融) 机器学习 生物化学 化学 物理 量子力学 基因
作者
Heng Zuo,Huiyong Guo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (2): 991-1012 被引量:1
标识
DOI:10.1177/14759217231176958
摘要

In the structural health monitoring (SHM) of civil engineering, most of the structural damage is nonlinear damage, such as breathing cracks and bolt looseness. Under the excitation of external loads, the time-domain response data of the structure produced by these nonlinear damages have nonlinear features. In order to solve the time-domain nonlinear damage identification problem of complex structures, this paper proposes a nonlinear damage identification method based on the information distance of GNPAX/GARCH (general expression of system identification for linear and nonlinear with polynomial approximation and exogenous inputs/generalized autoregressive conditional heteroskedasticity) model. First, an order determination method based on Bayesian optimization to select the order of the GNPAX/GARCH model was proposed, and the GNPAX/GARCH model was established for damage identification. Then, the redundant structural items of GNPAX/GARCH model were removed by the model optimization method based on the structural pruning algorithm. Finally, the information distance of the GNPAX/GARCH model conditional heteroscedasticity series between the baseline state and test state was derived, and the structural damage source locations were determined according to the information distance. A three-story frame structure experiment and a stand structure experiment were used to verify the effectiveness of the proposed method. The results show that the proposed method can effectively identify the nonlinear damages caused by the component breathing crack and joint bolt looseness, verifying its robustness to the nonlinear damage identification of the multi-story and multi-span complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助海梓采纳,获得10
3秒前
ggg完成签到,获得积分10
4秒前
5秒前
6秒前
黯然发布了新的文献求助10
7秒前
同福发布了新的文献求助10
7秒前
yi完成签到,获得积分10
8秒前
9秒前
9秒前
加油发布了新的文献求助10
10秒前
double完成签到 ,获得积分10
10秒前
bkagyin应助鲳鱼密码采纳,获得10
10秒前
小小发布了新的文献求助10
11秒前
1233发布了新的文献求助30
12秒前
韩芸姣完成签到,获得积分10
13秒前
13秒前
深情安青应助ke采纳,获得10
14秒前
Akim应助同福采纳,获得10
14秒前
梁林林完成签到,获得积分10
16秒前
16秒前
韩芸姣发布了新的文献求助10
16秒前
毛豆应助2023AKY采纳,获得10
16秒前
曾经不言完成签到 ,获得积分10
17秒前
Orange应助登徒子好色采纳,获得30
17秒前
同福完成签到,获得积分10
18秒前
18秒前
mike2012完成签到 ,获得积分10
18秒前
18秒前
19秒前
21秒前
21秒前
彩色草莓发布了新的文献求助200
21秒前
hh发布了新的文献求助10
22秒前
影子发布了新的文献求助10
22秒前
22秒前
DrLiu完成签到,获得积分10
22秒前
23秒前
栗荔发布了新的文献求助10
24秒前
Chancerain发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589