亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network

计算机科学 人工神经网络 图形 杀伤力 合成致死 机器学习 人工智能 计算生物学 基因 理论计算机科学 生物 遗传学 DNA修复
作者
Yan Zhu,Yuhuan Zhou,Yang Liu,Xuan Wang,Junyi Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (2) 被引量:10
标识
DOI:10.1093/bioinformatics/btad015
摘要

Abstract Motivation Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. Results In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. Availability and implementation SLGNN is freely available at https://github.com/zy972014452/SLGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
Ava应助科研通管家采纳,获得10
51秒前
Virtual应助科研通管家采纳,获得10
51秒前
51秒前
xiaolang2004完成签到,获得积分10
1分钟前
1分钟前
mickaqi完成签到 ,获得积分10
2分钟前
fhw完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
norberta发布了新的文献求助10
2分钟前
MchemG应助科研通管家采纳,获得30
2分钟前
KSung完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Hvginn发布了新的文献求助10
3分钟前
3分钟前
灵巧灵松发布了新的文献求助10
3分钟前
Zzz_Carlos完成签到 ,获得积分10
3分钟前
灵巧灵松完成签到,获得积分20
3分钟前
4分钟前
4分钟前
桦奕兮完成签到 ,获得积分10
4分钟前
JrPaleo101完成签到,获得积分10
5分钟前
5分钟前
5分钟前
ljl86400完成签到,获得积分10
6分钟前
Owen应助科研通管家采纳,获得10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
7分钟前
加绒完成签到,获得积分10
7分钟前
Hvginn完成签到,获得积分10
8分钟前
星际舟完成签到,获得积分10
8分钟前
斯文败类应助科研通管家采纳,获得10
8分钟前
9分钟前
PhD_Lee73完成签到 ,获得积分0
9分钟前
9分钟前
草木完成签到 ,获得积分20
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568812
求助须知:如何正确求助?哪些是违规求助? 3991266
关于积分的说明 12355576
捐赠科研通 3663334
什么是DOI,文献DOI怎么找? 2018855
邀请新用户注册赠送积分活动 1053263
科研通“疑难数据库(出版商)”最低求助积分说明 940862