SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network

计算机科学 人工神经网络 图形 杀伤力 合成致死 机器学习 人工智能 计算生物学 基因 理论计算机科学 生物 遗传学 DNA修复
作者
Yan Zhu,Yuhuan Zhou,Yang Liu,Xuan Wang,Junyi Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (2) 被引量:10
标识
DOI:10.1093/bioinformatics/btad015
摘要

Abstract Motivation Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. Results In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. Availability and implementation SLGNN is freely available at https://github.com/zy972014452/SLGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助约克宁采纳,获得10
1秒前
皮皮蛙完成签到,获得积分10
1秒前
小甜发布了新的文献求助10
1秒前
keke完成签到,获得积分10
2秒前
2秒前
2秒前
白茶清酒完成签到,获得积分10
2秒前
Hello应助不会取名啊采纳,获得80
2秒前
大模型应助亮星采纳,获得10
3秒前
QQ完成签到,获得积分10
3秒前
yi0完成签到,获得积分10
3秒前
chenjun7080完成签到,获得积分10
3秒前
4秒前
青蛙十字绣00700完成签到,获得积分10
4秒前
优美季节完成签到 ,获得积分10
4秒前
机器猫nzy完成签到,获得积分10
5秒前
萤火虫完成签到,获得积分10
5秒前
勤奋雨完成签到,获得积分10
5秒前
5秒前
李爱国应助琉璃岁月采纳,获得10
5秒前
mss12138完成签到,获得积分0
6秒前
yu完成签到 ,获得积分10
6秒前
无限达完成签到,获得积分10
6秒前
纵马长歌完成签到,获得积分10
6秒前
6秒前
Serena完成签到,获得积分20
7秒前
zhao完成签到,获得积分10
7秒前
陈琳完成签到,获得积分10
8秒前
Colin_chen完成签到,获得积分10
8秒前
之以发布了新的文献求助10
9秒前
洋山芋完成签到,获得积分10
9秒前
ferritin完成签到 ,获得积分10
9秒前
haoyunlai完成签到,获得积分10
9秒前
彩虹天堂完成签到,获得积分10
9秒前
decademe完成签到,获得积分10
10秒前
10秒前
l六分之一完成签到,获得积分10
10秒前
精明妙之完成签到,获得积分10
11秒前
研友_LX7478完成签到,获得积分10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874