SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network

计算机科学 人工神经网络 图形 杀伤力 合成致死 机器学习 人工智能 计算生物学 基因 理论计算机科学 生物 遗传学 DNA修复
作者
Yan Zhu,Yuhuan Zhou,Yang Liu,Xuan Wang,Junyi Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (2) 被引量:10
标识
DOI:10.1093/bioinformatics/btad015
摘要

Abstract Motivation Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. Results In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. Availability and implementation SLGNN is freely available at https://github.com/zy972014452/SLGNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
5秒前
fap发布了新的文献求助10
8秒前
8秒前
lulu发布了新的文献求助10
9秒前
9秒前
小牛马关注了科研通微信公众号
9秒前
顺利的飞荷完成签到,获得积分0
12秒前
13秒前
13秒前
LLL发布了新的文献求助10
14秒前
Tang完成签到 ,获得积分10
14秒前
学医的沣一完成签到,获得积分10
14秒前
怡然的幻灵完成签到,获得积分10
14秒前
好运连连发布了新的文献求助10
15秒前
15秒前
非要叫我起个昵称完成签到,获得积分10
16秒前
16秒前
研酒生发布了新的文献求助10
17秒前
Moment完成签到 ,获得积分10
17秒前
王子怡发布了新的文献求助10
17秒前
20秒前
热烈的玛丽完成签到,获得积分10
21秒前
22秒前
22秒前
sanmochuan发布了新的文献求助10
22秒前
23秒前
顺心的雅绿完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
24秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
jouholly发布了新的文献求助10
27秒前
lanchong发布了新的文献求助10
27秒前
27秒前
李爱国应助牛马采纳,获得10
28秒前
BoYoung完成签到,获得积分10
28秒前
seven发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554346
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654484
捐赠科研通 4580637
什么是DOI,文献DOI怎么找? 2512417
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076