亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network

计算机科学 人工神经网络 图形 杀伤力 合成致死 机器学习 人工智能 计算生物学 基因 理论计算机科学 生物 遗传学 DNA修复
作者
Yan Zhu,Yuhuan Zhou,Yang Liu,Xuan Wang,Junyi Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (2) 被引量:10
标识
DOI:10.1093/bioinformatics/btad015
摘要

Abstract Motivation Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. Results In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. Availability and implementation SLGNN is freely available at https://github.com/zy972014452/SLGNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子焱完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
11秒前
18秒前
西升东落完成签到 ,获得积分10
19秒前
jueshadi完成签到 ,获得积分10
22秒前
酷波er应助科研通管家采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得10
23秒前
23秒前
Link发布了新的文献求助10
23秒前
Criminology34应助加油小鹿采纳,获得10
24秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
33秒前
34秒前
科研通AI2S应助Eden采纳,获得10
36秒前
shun发布了新的文献求助10
42秒前
willlee完成签到 ,获得积分10
45秒前
小白菜完成签到,获得积分10
45秒前
53秒前
高高烙完成签到 ,获得积分10
53秒前
Eden发布了新的文献求助10
58秒前
刘振坤完成签到,获得积分10
1分钟前
Lucas应助CMQ2021102261采纳,获得10
1分钟前
1分钟前
英俊的铭应助jj采纳,获得10
1分钟前
1分钟前
领导范儿应助Eden采纳,获得10
1分钟前
1分钟前
远远发布了新的文献求助10
1分钟前
CC发布了新的文献求助10
1分钟前
jj发布了新的文献求助10
1分钟前
远远完成签到,获得积分10
1分钟前
1分钟前
1分钟前
CodeCraft应助认真的紫寒采纳,获得10
1分钟前
绿色植物发布了新的文献求助10
1分钟前
闪闪发布了新的文献求助10
1分钟前
1分钟前
zsy发布了新的文献求助10
1分钟前
level完成签到 ,获得积分10
1分钟前
复杂的可乐完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622185
求助须知:如何正确求助?哪些是违规求助? 4707110
关于积分的说明 14938651
捐赠科研通 4768595
什么是DOI,文献DOI怎么找? 2552156
邀请新用户注册赠送积分活动 1514317
关于科研通互助平台的介绍 1475005