亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network

计算机科学 人工神经网络 图形 杀伤力 合成致死 机器学习 人工智能 计算生物学 基因 理论计算机科学 生物 遗传学 DNA修复
作者
Yan Zhu,Yuhuan Zhou,Yang Liu,Xuan Wang,Junyi Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (2) 被引量:10
标识
DOI:10.1093/bioinformatics/btad015
摘要

Abstract Motivation Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. Results In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. Availability and implementation SLGNN is freely available at https://github.com/zy972014452/SLGNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
6秒前
Cmqq发布了新的文献求助10
7秒前
12秒前
大喜发布了新的文献求助30
14秒前
chongziccc完成签到 ,获得积分10
14秒前
CipherSage应助56采纳,获得10
17秒前
wwwwpy完成签到,获得积分10
22秒前
didididm完成签到,获得积分10
35秒前
你好完成签到 ,获得积分10
41秒前
冷静新烟发布了新的文献求助10
46秒前
BowieHuang应助科研通管家采纳,获得10
46秒前
ceeray23应助科研通管家采纳,获得10
46秒前
汤姆完成签到,获得积分10
52秒前
58秒前
李教授发布了新的文献求助10
1分钟前
李教授完成签到,获得积分10
1分钟前
小詹同学完成签到 ,获得积分10
1分钟前
Ash完成签到,获得积分10
1分钟前
疯狂的寻琴完成签到 ,获得积分10
1分钟前
无花果应助十是十采纳,获得10
1分钟前
YYL完成签到 ,获得积分10
1分钟前
1分钟前
可爱的函函应助林狗采纳,获得10
1分钟前
科研通AI2S应助Zenia采纳,获得10
1分钟前
大轩完成签到 ,获得积分10
1分钟前
1分钟前
懵懂的土豆完成签到 ,获得积分10
1分钟前
1分钟前
NI完成签到 ,获得积分10
2分钟前
宋宋要成功完成签到 ,获得积分10
2分钟前
Criminology34举报栗松琛求助涉嫌违规
2分钟前
穆雨完成签到 ,获得积分10
2分钟前
林狗发布了新的文献求助10
2分钟前
Zenia发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助满意的世界采纳,获得150
2分钟前
景严发布了新的文献求助10
2分钟前
认真的不斜完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599706
求助须知:如何正确求助?哪些是违规求助? 4685410
关于积分的说明 14838480
捐赠科研通 4670043
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898