SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network

计算机科学 人工神经网络 图形 杀伤力 合成致死 机器学习 人工智能 计算生物学 基因 理论计算机科学 生物 遗传学 DNA修复
作者
Yan Zhu,Yuhuan Zhou,Yang Liu,Xuan Wang,Junyi Li
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:39 (2) 被引量:10
标识
DOI:10.1093/bioinformatics/btad015
摘要

Abstract Motivation Synthetic lethality (SL) is a form of genetic interaction that can selectively kill cancer cells without damaging normal cells. Exploiting this mechanism is gaining popularity in the field of targeted cancer therapy and anticancer drug development. Due to the limitations of identifying SL interactions from laboratory experiments, an increasing number of research groups are devising computational prediction methods to guide the discovery of potential SL pairs. Although existing methods have attempted to capture the underlying mechanisms of SL interactions, methods that have a deeper understanding of and attempt to explain SL mechanisms still need to be developed. Results In this work, we propose a novel SL prediction method, SLGNN. This method is based on the following assumption: SL interactions are caused by different molecular events or biological processes, which we define as SL-related factors that lead to SL interactions. SLGNN, apart from identifying SL interaction pairs, also models the preferences of genes for different SL-related factors, making the results more interpretable for biologists and clinicians. SLGNN consists of three steps: first, we model the combinations of relationships in the gene-related knowledge graph as the SL-related factors. Next, we derive initial embeddings of genes through an explicit message aggregation process of the knowledge graph. Finally, we derive the final gene embeddings through an SL graph, constructed using known SL gene pairs, utilizing factor-based message aggregation. At this stage, a supervised end-to-end training model is used for SL interaction prediction. Based on experimental results, the proposed SLGNN model outperforms all current state-of-the-art SL prediction methods and provides better interpretability. Availability and implementation SLGNN is freely available at https://github.com/zy972014452/SLGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
乐山乐水发布了新的文献求助20
1秒前
yyh完成签到,获得积分20
3秒前
cyf完成签到 ,获得积分10
3秒前
情怀应助张点心采纳,获得10
3秒前
载酒醉发布了新的文献求助10
3秒前
SciGPT应助坦率的向日葵采纳,获得10
4秒前
Fancy完成签到,获得积分20
4秒前
4秒前
阔达的无剑应助mgr采纳,获得20
5秒前
5秒前
汉堡包应助英勇的老头采纳,获得10
6秒前
yyh发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
10秒前
???发布了新的文献求助10
11秒前
高大绝义发布了新的文献求助10
12秒前
夕夜完成签到,获得积分10
12秒前
14秒前
离枝完成签到 ,获得积分10
14秒前
。。。发布了新的文献求助10
16秒前
科研通AI2S应助Dece采纳,获得10
16秒前
17秒前
羊羊羊完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
???完成签到,获得积分10
19秒前
20秒前
充电宝应助Mayday采纳,获得10
20秒前
银河苏打完成签到,获得积分10
20秒前
22秒前
所所应助高兴冬灵采纳,获得10
22秒前
yutang完成签到 ,获得积分10
23秒前
张宝发布了新的文献求助10
23秒前
乐山乐水完成签到,获得积分10
26秒前
haha应助zmuzhang2019采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161611
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897655
捐赠科研通 2471797
什么是DOI,文献DOI怎么找? 1316160
科研通“疑难数据库(出版商)”最低求助积分说明 631222
版权声明 602112