Natural frequency identification model based on BP neural network for Camellia oleifera fruit harvesting

油茶 人工神经网络 树(集合论) 鉴定(生物学) 固有频率 树形结构 航程(航空) 生物系统 集合(抽象数据类型) 计算机科学 工程类 数学 算法 人工智能 声学 植物 数学分析 航空航天工程 物理 生物 二叉树 振动 程序设计语言
作者
Xiaoqiang Du,Xintao Han,Tengfei Shen,Zhichao Meng,Kaizhan Chen,Xiaohua Yao,Yongqing Cao,Sergio Castro García
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:237: 38-49 被引量:2
标识
DOI:10.1016/j.biosystemseng.2023.11.012
摘要

Vibratory harvesting is an important means of mechanically harvesting tree fruit. The optimal excitation parameters are usually experimentally determined under complex conditions with different environments and machine configurations. Optimisation methods include tree modelling and dynamic analysis but experimental validation can take much time due to the complexity of tree structure and properties. A simple and appropriate identification model that could identify the natural frequencies of trees might simplify the process and promote the technology. A natural frequency identification model is proposed based on back propagation (BP) neural network to identifying the natural frequency of the tree based on its structure. Taking Camellia oleifera tree with its upright canopy as an example, the excitation parameters that can achieve better harvesting of fruit was determined here by orthogonal test. A dynamic model was established, and the tree structure variables were derived as the input layer of the model. The dataset of tree dynamics was established by finite element analysis and the effective natural frequency region was set as the model output layer. A natural frequency identification model was established based on TensorFlow, where the input and output parameters are fitted using a BP neural network. Application of the model was carried out after substantial training and testing. In the range of natural frequencies 6-7Hz, the mean square error between the natural frequency identification value and the measured value was only 0.0408, which verified the reliability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助我必做出来采纳,获得50
刚刚
1秒前
随机起的名完成签到,获得积分10
1秒前
Owen应助努力的小狗屁采纳,获得10
2秒前
2秒前
vuig完成签到 ,获得积分10
2秒前
哈哈哈的一笑完成签到,获得积分10
2秒前
2秒前
Emma完成签到,获得积分10
2秒前
3秒前
3秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
3秒前
huanger完成签到,获得积分10
3秒前
Tayzon完成签到 ,获得积分10
3秒前
我测你码完成签到,获得积分10
3秒前
超级宇宙二踢脚完成签到,获得积分10
4秒前
4秒前
5秒前
大气小新完成签到,获得积分10
5秒前
ILS完成签到 ,获得积分10
5秒前
Orange应助澜生采纳,获得10
6秒前
lin完成签到,获得积分10
7秒前
Ares发布了新的文献求助10
7秒前
7秒前
谭平完成签到 ,获得积分10
7秒前
8秒前
淡定紫菱完成签到,获得积分10
8秒前
所所应助HYH采纳,获得20
8秒前
8秒前
木香完成签到,获得积分10
9秒前
尘雾发布了新的文献求助10
10秒前
11秒前
高鑫完成签到 ,获得积分10
11秒前
英姑应助dd采纳,获得10
11秒前
Chan0501关注了科研通微信公众号
12秒前
12秒前
研友_LMNjkn发布了新的文献求助10
12秒前
tjunqi完成签到,获得积分10
13秒前
13秒前
科研通AI2S应助下课了吧采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794