Natural frequency identification model based on BP neural network for Camellia oleifera fruit harvesting

油茶 人工神经网络 树(集合论) 鉴定(生物学) 固有频率 树形结构 航程(航空) 生物系统 集合(抽象数据类型) 计算机科学 工程类 数学 算法 人工智能 声学 植物 数学分析 航空航天工程 物理 生物 二叉树 振动 程序设计语言
作者
Xiaoqiang Du,Xintao Han,Tengfei Shen,Zhichao Meng,Kaizhan Chen,Xiaohua Yao,Yongqing Cao,Sergio Castro García
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:237: 38-49 被引量:2
标识
DOI:10.1016/j.biosystemseng.2023.11.012
摘要

Vibratory harvesting is an important means of mechanically harvesting tree fruit. The optimal excitation parameters are usually experimentally determined under complex conditions with different environments and machine configurations. Optimisation methods include tree modelling and dynamic analysis but experimental validation can take much time due to the complexity of tree structure and properties. A simple and appropriate identification model that could identify the natural frequencies of trees might simplify the process and promote the technology. A natural frequency identification model is proposed based on back propagation (BP) neural network to identifying the natural frequency of the tree based on its structure. Taking Camellia oleifera tree with its upright canopy as an example, the excitation parameters that can achieve better harvesting of fruit was determined here by orthogonal test. A dynamic model was established, and the tree structure variables were derived as the input layer of the model. The dataset of tree dynamics was established by finite element analysis and the effective natural frequency region was set as the model output layer. A natural frequency identification model was established based on TensorFlow, where the input and output parameters are fitted using a BP neural network. Application of the model was carried out after substantial training and testing. In the range of natural frequencies 6-7Hz, the mean square error between the natural frequency identification value and the measured value was only 0.0408, which verified the reliability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZQ完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Lina HE完成签到 ,获得积分10
3秒前
852应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
进步完成签到,获得积分10
4秒前
852应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
iNk应助dh采纳,获得20
4秒前
orixero应助科研通管家采纳,获得30
4秒前
思源应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
Ezio_sunhao完成签到,获得积分10
6秒前
pangao发布了新的文献求助10
6秒前
wys完成签到,获得积分10
7秒前
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048