Natural frequency identification model based on BP neural network for Camellia oleifera fruit harvesting

油茶 人工神经网络 树(集合论) 鉴定(生物学) 固有频率 树形结构 航程(航空) 生物系统 集合(抽象数据类型) 计算机科学 工程类 数学 算法 人工智能 声学 植物 数学分析 航空航天工程 物理 生物 二叉树 振动 程序设计语言
作者
Xiaoqiang Du,Xintao Han,Tengfei Shen,Zhichao Meng,Kaizhan Chen,Xiaohua Yao,Yongqing Cao,Sergio Castro García
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:237: 38-49 被引量:2
标识
DOI:10.1016/j.biosystemseng.2023.11.012
摘要

Vibratory harvesting is an important means of mechanically harvesting tree fruit. The optimal excitation parameters are usually experimentally determined under complex conditions with different environments and machine configurations. Optimisation methods include tree modelling and dynamic analysis but experimental validation can take much time due to the complexity of tree structure and properties. A simple and appropriate identification model that could identify the natural frequencies of trees might simplify the process and promote the technology. A natural frequency identification model is proposed based on back propagation (BP) neural network to identifying the natural frequency of the tree based on its structure. Taking Camellia oleifera tree with its upright canopy as an example, the excitation parameters that can achieve better harvesting of fruit was determined here by orthogonal test. A dynamic model was established, and the tree structure variables were derived as the input layer of the model. The dataset of tree dynamics was established by finite element analysis and the effective natural frequency region was set as the model output layer. A natural frequency identification model was established based on TensorFlow, where the input and output parameters are fitted using a BP neural network. Application of the model was carried out after substantial training and testing. In the range of natural frequencies 6-7Hz, the mean square error between the natural frequency identification value and the measured value was only 0.0408, which verified the reliability of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助研友_LkYoRZ采纳,获得10
1秒前
1秒前
Tangjia完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
情怀应助云清采纳,获得20
4秒前
6秒前
CCCr发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
guozizi发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
9秒前
小二郎应助欢喜寄风采纳,获得10
10秒前
SinaYork完成签到 ,获得积分10
10秒前
香蕉觅云应助kk采纳,获得10
10秒前
12秒前
萌酱发布了新的文献求助10
12秒前
LiuHK发布了新的文献求助10
12秒前
火星上的天思完成签到,获得积分10
12秒前
江思可发布了新的文献求助10
12秒前
尔尔发布了新的文献求助30
13秒前
13秒前
冰河完成签到,获得积分10
13秒前
14秒前
路路完成签到,获得积分10
14秒前
咚咚发布了新的文献求助10
14秒前
零零完成签到,获得积分10
14秒前
15秒前
猪猪hero应助wjx采纳,获得10
15秒前
香蕉觅云应助wjx采纳,获得10
15秒前
15秒前
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975250
求助须知:如何正确求助?哪些是违规求助? 3519625
关于积分的说明 11199055
捐赠科研通 3255962
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877358
科研通“疑难数据库(出版商)”最低求助积分说明 806298