作者
Yong Kim,Berkley E. Gryder,Ranuka Sinniah,Megan L. Peach,Jack F. Shern,Abdalla Abdelmaksoud,Silvia Pomella,Girma M. Woldemichael,Benjamin Z. Stanton,David Milewski,Joseph J. Barchi,John S. Schneekloth,Raj Chari,Joshua T. Kowalczyk,Shilpa R. Shenoy,Jason R. Evans,Young Song,Chaoyu Wang,Xinyu Wen,Hsien-Chao Chou,Vineela Gangalapudi,Dominic Esposito,Jane Jones,Lauren Procter,Maura O’Neill,Lisa M. Jenkins,Nadya I. Tarasova,Jun S. Wei,James B. McMahon,Barry R. O’Keefe,Robert G. Hawley,Javed Khan
摘要
Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.