A review of deep learning models (U-Net architectures) for segmenting brain tumors

市场细分 人工智能 深度学习 计算机科学 业务 营销
作者
Mawj Abdul-Ameer Al-Murshidawy,Omran Al-Shamma
出处
期刊:Bulletin of Electrical Engineering and Informatics [Institute of Advanced Engineering and Science]
卷期号:13 (2): 1015-1030 被引量:1
标识
DOI:10.11591/eei.v13i2.6015
摘要

Highly accurate tumor segmentation and classification are required to treat the brain tumor appropriately. Brain tumor segmentation (BTS) approaches can be categorized into manual, semi-automated, and full-automated. The deep learning (DL) approach has been broadly deployed to automate tumor segmentation in therapy, treatment planning, and diagnosing evaluation. It is mainly based on the U-Net model that has recently attained state-of-the-art performances for multimodal BTS. This paper demonstrates a literature review for BTS using U-Net models. Additionally, it represents a common way to design a novel U-Net model for segmenting brain tumors. The steps of this DL way are described to obtain the required model. They include gathering the dataset, pre-processing, augmenting the images (optional), designing/selecting the model architecture, and applying transfer learning (optional). The model architecture and the performance accuracy are the two most important metrics used to review the works of literature. This review concluded that the model accuracy is proportional to its architectural complexity, and the future challenge is to obtain higher accuracy with low-complexity architecture. Challenges, alternatives, and future trends are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨雾发布了新的文献求助10
刚刚
daiyapeng完成签到,获得积分10
刚刚
ivy应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
NN应助科研通管家采纳,获得10
1秒前
36456657应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
NN应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
36456657应助科研通管家采纳,获得10
2秒前
NN应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
NN应助科研通管家采纳,获得10
2秒前
2秒前
赘婿应助科研通管家采纳,获得30
2秒前
2秒前
shouyu29应助科研通管家采纳,获得10
2秒前
2秒前
顾闭月发布了新的文献求助10
2秒前
2秒前
活力绮兰应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
栀清完成签到,获得积分20
3秒前
小W爱吃梨完成签到,获得积分10
5秒前
5秒前
栀清发布了新的文献求助10
5秒前
zss完成签到 ,获得积分10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794