An interpretable shapelets-based method for myocardial infarction detection using dynamic learning and deep learning

人工智能 判别式 深度学习 计算机科学 模式识别(心理学) 人工神经网络 心肌梗塞 机器学习 心脏病学 医学
作者
Jierui Qu,Qinghua Sun,Weiming Wu,Fukai Zhang,Chunmiao Liang,Yuguo Chen,Cong Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:45 (3): 035001-035001
标识
DOI:10.1088/1361-6579/ad2217
摘要

Abstract Objective. Myocardial infarction (MI) is a prevalent cardiovascular disease that contributes to global mortality rates. Timely diagnosis and treatment of MI are crucial in reducing its fatality rate. Currently, electrocardiography (ECG) serves as the primary tool for clinical diagnosis. However, detecting MI accurately through ECG remains challenging due to the complex and subtle pathological ECG changes it causes. To enhance the accuracy of ECG in detecting MI, a more thorough exploration of ECG signals is necessary to extract significant features. Approach. In this paper, we propose an interpretable shapelet-based approach for MI detection using dynamic learning and deep learning. Firstly, the intrinsic dynamics of ECG signals are learned through dynamic learning. Then, a deep neural network is utilized to extract and select shapelets from ECG dynamics, which can capture locally specific ECG changes, and serve as discriminative features for identifying MI patients. Finally, the ensemble model for MI detection is built by integrating shapelets of multi-dimensional ECG dynamic signals. Main results. The performance of the proposed method is evaluated on the public PTB dataset with accuracy, sensitivity, and specificity of 94.11%, 94.97%, and 90.98%. Significance. The shapelets obtained in this study exhibit significant morphological differences between MI and healthy subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyh完成签到,获得积分10
1秒前
周周完成签到 ,获得积分10
1秒前
liushoujia完成签到,获得积分10
2秒前
2秒前
缥缈的小懒猪完成签到 ,获得积分10
3秒前
轻松绿旋完成签到,获得积分10
3秒前
危机的慕卉完成签到 ,获得积分10
4秒前
赵世璧完成签到,获得积分10
4秒前
ZY完成签到 ,获得积分10
4秒前
xian完成签到,获得积分10
5秒前
默蟹完成签到 ,获得积分10
5秒前
fxy发布了新的文献求助10
6秒前
6秒前
独特乘风完成签到,获得积分10
7秒前
呆萌鱼完成签到,获得积分10
7秒前
sdasd完成签到 ,获得积分10
7秒前
KBRS完成签到,获得积分10
8秒前
弹指一挥间完成签到,获得积分10
9秒前
宁为树完成签到,获得积分10
9秒前
haha完成签到,获得积分10
10秒前
迎风完成签到,获得积分10
10秒前
橙子abcy完成签到,获得积分10
10秒前
齐天完成签到 ,获得积分10
11秒前
乐观的凌兰完成签到 ,获得积分10
11秒前
zpl发布了新的文献求助10
11秒前
TS6539关注了科研通微信公众号
11秒前
12秒前
8R60d8应助逃不了采纳,获得10
13秒前
yao chen完成签到,获得积分10
13秒前
hehe发布了新的文献求助10
13秒前
昏睡的白桃完成签到,获得积分10
14秒前
melody完成签到,获得积分10
15秒前
ddd完成签到 ,获得积分10
16秒前
无心的枫完成签到,获得积分10
16秒前
若山完成签到,获得积分10
16秒前
emma完成签到,获得积分10
17秒前
caozhi完成签到,获得积分10
18秒前
zpc完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855