An interpretable shapelets-based method for myocardial infarction detection using dynamic learning and deep learning

人工智能 判别式 深度学习 计算机科学 模式识别(心理学) 人工神经网络 心肌梗塞 机器学习 心脏病学 医学
作者
Jierui Qu,Qinghua Sun,Weiming Wu,Fukai Zhang,Chunmiao Liang,Yuguo Chen,Cong Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:45 (3): 035001-035001
标识
DOI:10.1088/1361-6579/ad2217
摘要

Abstract Objective. Myocardial infarction (MI) is a prevalent cardiovascular disease that contributes to global mortality rates. Timely diagnosis and treatment of MI are crucial in reducing its fatality rate. Currently, electrocardiography (ECG) serves as the primary tool for clinical diagnosis. However, detecting MI accurately through ECG remains challenging due to the complex and subtle pathological ECG changes it causes. To enhance the accuracy of ECG in detecting MI, a more thorough exploration of ECG signals is necessary to extract significant features. Approach. In this paper, we propose an interpretable shapelet-based approach for MI detection using dynamic learning and deep learning. Firstly, the intrinsic dynamics of ECG signals are learned through dynamic learning. Then, a deep neural network is utilized to extract and select shapelets from ECG dynamics, which can capture locally specific ECG changes, and serve as discriminative features for identifying MI patients. Finally, the ensemble model for MI detection is built by integrating shapelets of multi-dimensional ECG dynamic signals. Main results. The performance of the proposed method is evaluated on the public PTB dataset with accuracy, sensitivity, and specificity of 94.11%, 94.97%, and 90.98%. Significance. The shapelets obtained in this study exhibit significant morphological differences between MI and healthy subjects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨完成签到,获得积分10
刚刚
胖胖龙完成签到,获得积分10
刚刚
1秒前
lidian完成签到,获得积分10
1秒前
宇文宛菡发布了新的文献求助10
2秒前
小马甲应助你是我的唯一采纳,获得10
2秒前
2秒前
李健应助li采纳,获得10
2秒前
3秒前
3秒前
悠然完成签到,获得积分10
3秒前
sissiarno应助马甲采纳,获得30
4秒前
4秒前
5秒前
毛豆应助MZP采纳,获得30
5秒前
dacongming发布了新的文献求助10
5秒前
夕阳昏红发布了新的文献求助10
6秒前
爆米花应助向天采纳,获得10
6秒前
maox1aoxin应助ggg采纳,获得30
6秒前
jsczszn完成签到,获得积分10
7秒前
药剂机智小仓鼠完成签到,获得积分10
7秒前
7秒前
之之要乖发布了新的文献求助10
7秒前
萧一发布了新的文献求助10
9秒前
9秒前
简单完成签到,获得积分10
10秒前
崩溃完成签到,获得积分10
10秒前
Orange应助Badin采纳,获得10
10秒前
搜集达人应助oywc采纳,获得10
10秒前
li发布了新的文献求助10
11秒前
夕阳昏红完成签到,获得积分20
12秒前
尔安发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
xp完成签到 ,获得积分10
15秒前
15秒前
15秒前
魔幻柜子完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255