GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations

计算机科学 变压器 邻接矩阵 图形 数据挖掘 人工智能 理论计算机科学 量子力学 物理 电压
作者
Dengju Yao,Bailin Li,Xiaojuan Zhan,Xiaorong Zhan,Liyang Yu
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:25 (1) 被引量:3
标识
DOI:10.1186/s12859-023-05625-1
摘要

Abstract Background A growing body of researches indicate that the disrupted expression of long non-coding RNA (lncRNA) is linked to a range of human disorders. Therefore, the effective prediction of lncRNA-disease association (LDA) can not only suggest solutions to diagnose a condition but also save significant time and labor costs. Method In this work, we proposed a novel LDA predicting algorithm based on graph convolutional network and transformer, named GCNFORMER. Firstly, we integrated the intraclass similarity and interclass connections between miRNAs, lncRNAs and diseases, and built a graph adjacency matrix. Secondly, to completely obtain the features between various nodes, we employed a graph convolutional network for feature extraction. Finally, to obtain the global dependencies between inputs and outputs, we used a transformer encoder with a multiheaded attention mechanism to forecast lncRNA-disease associations. Results The results of fivefold cross-validation experiment on the public dataset revealed that the AUC and AUPR of GCNFORMER achieved 0.9739 and 0.9812, respectively. We compared GCNFORMER with six advanced LDA prediction models, and the results indicated its superiority over the other six models. Furthermore, GCNFORMER's effectiveness in predicting potential LDAs is underscored by case studies on breast cancer, colon cancer and lung cancer. Conclusions The combination of graph convolutional network and transformer can effectively improve the performance of LDA prediction model and promote the in-depth development of this research filed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘捕发布了新的文献求助10
1秒前
素直发布了新的文献求助10
1秒前
1秒前
1秒前
hrzmlily发布了新的文献求助10
1秒前
LILING完成签到,获得积分10
2秒前
岳哥发布了新的文献求助10
2秒前
泡泡发布了新的文献求助10
3秒前
哈哈哈哈哈哈应助ddd采纳,获得10
3秒前
积极的誉完成签到,获得积分10
3秒前
3秒前
小岳同学发布了新的文献求助10
4秒前
yutian完成签到,获得积分10
4秒前
棋士发布了新的文献求助10
4秒前
双子土豆泥完成签到 ,获得积分10
4秒前
充电宝应助整齐的豪英采纳,获得10
4秒前
研友_nEowP8完成签到,获得积分10
4秒前
啾啾完成签到,获得积分10
4秒前
georgia_qiao完成签到,获得积分10
5秒前
伶俐绿柏发布了新的文献求助10
5秒前
领导范儿应助青荣采纳,获得10
5秒前
明亮紫易完成签到,获得积分10
6秒前
雪娇完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
biomds完成签到,获得积分10
7秒前
海棠花未眠完成签到,获得积分10
8秒前
Yuanyuan发布了新的文献求助10
8秒前
整齐的豪英完成签到,获得积分10
8秒前
9秒前
程琳发布了新的文献求助10
9秒前
qyhl完成签到,获得积分10
9秒前
Chen发布了新的文献求助10
10秒前
11秒前
11秒前
小蘑菇应助Gong采纳,获得10
11秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530