Highly conductive riboflavin-based carbon quantum dot–embedded SiO2@MoS2 nanocomposite for enhancing bioelectricity generation through synergistic direct and indirect electron transport

舍瓦内拉 材料科学 地杆菌 微生物燃料电池 纳米技术 电子转移 量子点 硫化地杆菌 纳米复合材料 纳米颗粒 化学工程 电极 阳极 生物膜 化学 光化学 细菌 物理化学 工程类 生物 遗传学
作者
Yi-Ho Kuo,Ming-Chien Hsu,Wen‐Jyun Wang,Hung-Hsi Peng,Weipeng Li
出处
期刊:Nano Energy [Elsevier BV]
卷期号:121: 109251-109251 被引量:7
标识
DOI:10.1016/j.nanoen.2023.109251
摘要

A microbial fuel cell (MFC) is an advanced green battery that has limited application because of its low current density. In the present study, Shewanella oneidensis MR-1, which is an electricity-producing bacterium, was used in an electrochemical reactor as a bacterial model. Mesoporous spherical silica nanoparticles (NPs) loaded with riboflavin (RF) were prepared as the starting material, following which surface modification was conducted to expose the thiol group, which considerably increased the affinity of the NPs to MoS2 and resulted in the formation of a dense MoS2 shell on the surface after calcination. Moreover, the loaded RFs were successfully transformed into RF-based carbon quantum dots (CQDs), which resulted in a substantial increase in conductivity. The CQD-embedded SiO2@MoS2 NPs, which contained redox-active N-doped CQDs and had a metallic MoS2 shell, were able to receive electrons from exoelectrogenic bacteria (charging) and transfer electrons to an indium tin oxide electrode (discharging). Thus, these NPs could act as an electron nanoshuttle and a conductive medium in biofilms for enhancing systematic extracellular electron transport. A 10-fold increase in bioelectricity production than no NPs addition was achieved, which confirmed the applicability of the aforementioned NPs in advanced MFC applications. The NPs prepared in this study, which mimic biological electron shuttles (e.g., RF) in long-distance conduction, can usher in a new era in the development of advanced MFCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hank发布了新的文献求助10
5秒前
魁梧的鸿煊完成签到 ,获得积分10
5秒前
leotao完成签到,获得积分10
6秒前
深情安青应助小刘同学采纳,获得10
9秒前
容珏完成签到 ,获得积分10
11秒前
体贴坤坤完成签到 ,获得积分10
13秒前
小巫见大巫完成签到,获得积分20
14秒前
游游完成签到,获得积分20
14秒前
科研助手6应助无欲无求采纳,获得10
15秒前
zys完成签到,获得积分10
16秒前
16秒前
19秒前
Hank完成签到,获得积分10
19秒前
能干澜完成签到 ,获得积分10
19秒前
sc完成签到,获得积分10
21秒前
mmmmmmgm发布了新的文献求助10
21秒前
luf完成签到,获得积分10
23秒前
24秒前
wanci应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
sdl发布了新的文献求助10
25秒前
MeiLing完成签到,获得积分10
27秒前
28秒前
persi完成签到 ,获得积分10
30秒前
幸福的鑫鹏完成签到 ,获得积分10
31秒前
单身的钧完成签到,获得积分10
31秒前
32秒前
华仔应助GAOGONGZI采纳,获得10
34秒前
陶醉如柏完成签到,获得积分10
34秒前
......发布了新的文献求助10
35秒前
科研通AI5应助中旬日采纳,获得10
36秒前
37秒前
贝勒发布了新的文献求助10
37秒前
jjgogogog完成签到,获得积分10
39秒前
YY927完成签到,获得积分10
40秒前
43秒前
我要啃木头完成签到,获得积分10
43秒前
44秒前
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774441
求助须知:如何正确求助?哪些是违规求助? 3320149
关于积分的说明 10198641
捐赠科研通 3034758
什么是DOI,文献DOI怎么找? 1665178
邀请新用户注册赠送积分活动 796703
科研通“疑难数据库(出版商)”最低求助积分说明 757549