Machine learning integration of multi-modal analytical data for distinguishing abnormal botanical drugs and its application in Guhong injection

计算机科学 数据挖掘 标准化 支持向量机 一致性(知识库) 瓶颈 传感器融合 线性判别分析 人工智能 模式识别(心理学) 嵌入式系统 操作系统
作者
Zhu Han,Jiandong Zhao,Yu Tang,Yì Wáng
出处
期刊:Chinese Medicine [Springer Nature]
卷期号:19 (1): 2-2 被引量:4
标识
DOI:10.1186/s13020-023-00873-y
摘要

Abstract Background Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification. Methods In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1 H NMR (q 1 HNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs. Results The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy. Conclusions A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虎啊虎啊发布了新的文献求助10
刚刚
刚刚
墨染完成签到 ,获得积分10
1秒前
1秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Return应助科研通管家采纳,获得10
2秒前
rebubu应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
chen应助科研通管家采纳,获得10
2秒前
游子轩应助科研通管家采纳,获得10
3秒前
123456完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Return应助科研通管家采纳,获得10
3秒前
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
Orange应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得200
3秒前
珞槿发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
chen应助科研通管家采纳,获得10
4秒前
哇哇哇发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
Singularity发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
gilderf发布了新的文献求助10
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800