已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning integration of multi-modal analytical data for distinguishing abnormal botanical drugs and its application in Guhong injection

计算机科学 数据挖掘 标准化 支持向量机 一致性(知识库) 瓶颈 传感器融合 线性判别分析 人工智能 模式识别(心理学) 嵌入式系统 操作系统
作者
Zhu Han,Jiandong Zhao,Yu Tang,Yì Wáng
出处
期刊:Chinese Medicine [Springer Nature]
卷期号:19 (1)
标识
DOI:10.1186/s13020-023-00873-y
摘要

Abstract Background Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification. Methods In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1 H NMR (q 1 HNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs. Results The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy. Conclusions A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leibaozun完成签到 ,获得积分10
4秒前
5秒前
雷天雨完成签到 ,获得积分10
5秒前
ASASAS完成签到,获得积分10
6秒前
烂漫小蝴蝶完成签到,获得积分10
9秒前
呼延水云发布了新的文献求助10
10秒前
ASASAS发布了新的文献求助50
12秒前
魔幻诗兰完成签到,获得积分10
12秒前
科研通AI2S应助小久小力采纳,获得10
13秒前
小王子完成签到,获得积分10
19秒前
21秒前
qianqian完成签到,获得积分20
27秒前
梅者如西发布了新的文献求助20
27秒前
WXY完成签到,获得积分10
31秒前
小洁完成签到 ,获得积分10
31秒前
小王子发布了新的文献求助10
32秒前
标致一手完成签到 ,获得积分10
33秒前
华仔应助梅者如西采纳,获得10
33秒前
35秒前
梅者如西完成签到,获得积分10
38秒前
超脱闲人发布了新的文献求助10
40秒前
科研通AI2S应助fengyuke采纳,获得10
41秒前
北觅完成签到 ,获得积分10
43秒前
可爱的函函应助七草肃采纳,获得10
45秒前
卧镁铀钳完成签到 ,获得积分10
54秒前
zz完成签到 ,获得积分10
55秒前
青羽凌雪应助fengyuke采纳,获得10
55秒前
舒适怀寒完成签到 ,获得积分10
56秒前
今后应助是你刘大爷采纳,获得10
57秒前
背后的皮带完成签到 ,获得积分10
59秒前
1分钟前
wang完成签到 ,获得积分10
1分钟前
hh发布了新的文献求助30
1分钟前
1分钟前
良良丸完成签到 ,获得积分10
1分钟前
思源应助彩色的金毛采纳,获得10
1分钟前
wangye完成签到 ,获得积分10
1分钟前
1分钟前
hua完成签到,获得积分10
1分钟前
科研通AI2S应助研友_8y2G0L采纳,获得10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256828
求助须知:如何正确求助?哪些是违规求助? 2898945
关于积分的说明 8303123
捐赠科研通 2568188
什么是DOI,文献DOI怎么找? 1394905
科研通“疑难数据库(出版商)”最低求助积分说明 652924
邀请新用户注册赠送积分活动 630631