Machine learning integration of multi-modal analytical data for distinguishing abnormal botanical drugs and its application in Guhong injection

计算机科学 数据挖掘 标准化 支持向量机 一致性(知识库) 瓶颈 传感器融合 线性判别分析 人工智能 模式识别(心理学) 操作系统 嵌入式系统
作者
Zhu Han,Jiandong Zhao,Yu Tang,Yì Wáng
出处
期刊:Chinese Medicine [BioMed Central]
卷期号:19 (1)
标识
DOI:10.1186/s13020-023-00873-y
摘要

Abstract Background Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification. Methods In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1 H NMR (q 1 HNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs. Results The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy. Conclusions A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xiaoxiao应助chang采纳,获得10
1秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
犹豫觅翠发布了新的文献求助10
4秒前
6秒前
6秒前
豚骨拉面发布了新的文献求助10
8秒前
8秒前
迷路无声发布了新的文献求助10
10秒前
10秒前
蔡从安发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
YoursSummer发布了新的文献求助10
12秒前
melon完成签到,获得积分10
12秒前
ztcncs完成签到,获得积分10
13秒前
葛博发布了新的文献求助10
13秒前
14秒前
完美世界应助某只羊采纳,获得10
14秒前
16秒前
TYJ完成签到,获得积分10
16秒前
英俊的铭应助奋斗芒果采纳,获得10
17秒前
Orange应助zhangsudi采纳,获得10
17秒前
含蓄白昼发布了新的文献求助10
18秒前
18秒前
TYJ发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
犹豫觅翠完成签到,获得积分10
20秒前
YoursSummer完成签到,获得积分10
21秒前
22秒前
24秒前
羊羊羊关注了科研通微信公众号
24秒前
26秒前
囙氼仚发布了新的文献求助10
28秒前
urman发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
zhangsudi发布了新的文献求助10
31秒前
NZH关闭了NZH文献求助
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664528
求助须知:如何正确求助?哪些是违规求助? 3224505
关于积分的说明 9757908
捐赠科研通 2934419
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735018