Machine learning integration of multi-modal analytical data for distinguishing abnormal botanical drugs and its application in Guhong injection

计算机科学 数据挖掘 标准化 支持向量机 一致性(知识库) 瓶颈 传感器融合 线性判别分析 人工智能 模式识别(心理学) 操作系统 嵌入式系统
作者
Zhu Han,Jiandong Zhao,Yu Tang,Yì Wáng
出处
期刊:Chinese Medicine [BioMed Central]
卷期号:19 (1)
标识
DOI:10.1186/s13020-023-00873-y
摘要

Abstract Background Determination of batch-to-batch consistency of botanical drugs (BDs) has long been the bottleneck in quality evaluation primarily due to the chemical diversity inherent in BDs. This diversity presents an obstacle to achieving comprehensive standardization for BDs. Basically, a single detection mode likely leads to substandard analysis results as different classes of structures always possess distinct physicochemical properties. Whereas representing a workaround for multi-target standardization using multi-modal data, data processing for information from diverse sources is of great importance for the accuracy of classification. Methods In this research, multi-modal data of 78 batches of Guhong injections (GHIs) consisting of 52 normal and 26 abnormal samples were acquired by employing HPLC-UV, -ELSD, and quantitative 1 H NMR (q 1 HNMR), of which data obtained was then individually used for Pearson correlation coefficient (PCC) calculation and partial least square-discriminant analysis (PLS-DA). Then, a mid-level data fusion method with data containing qualitative and quantitative information to establish a support vector machine (SVM) model for evaluating the batch-to-batch consistency of GHIs. Results The resulting outcomes showed that datasets from one detection mode (e.g., data from UV detectors only) are inadequate for accurately assessing the product's quality. The mid-level data fusion strategy for the quality evaluation enabled the classification of normal and abnormal batches of GHIs at 100% accuracy. Conclusions A quality assessment strategy was successfully developed by leveraging a mid-level data fusion method for the batch-to-batch consistency evaluation of GHIs. This study highlights the promising utility of data from different detection modes for the quality evaluation of BDs. It also reminds manufacturers and researchers about the advantages of involving data fusion to handle multi-modal data. Especially when done jointly, this strategy can significantly increase the accuracy of product classification and serve as a capable tool for studies of other BDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助LBX采纳,获得10
1秒前
2秒前
3秒前
3秒前
学术嫪毐发布了新的文献求助10
4秒前
4秒前
4秒前
万能图书馆应助Cyber_relic采纳,获得10
4秒前
fdkufghkd完成签到,获得积分10
5秒前
grace完成签到 ,获得积分10
5秒前
6秒前
十七完成签到,获得积分10
6秒前
practice发布了新的文献求助10
6秒前
6秒前
spy发布了新的文献求助10
7秒前
乘风破浪完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
7秒前
复杂的宝马完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
不是山谷完成签到,获得积分10
10秒前
hoijuon应助Jindyla采纳,获得10
10秒前
唐思远完成签到,获得积分10
11秒前
TLB完成签到,获得积分10
11秒前
充电宝应助猪猪hero采纳,获得10
12秒前
大模型应助alex采纳,获得10
12秒前
旺仔发布了新的文献求助10
12秒前
雾霭迷茫发布了新的文献求助10
12秒前
spirit发布了新的文献求助10
12秒前
13秒前
心晴发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
zzz发布了新的文献求助10
14秒前
15秒前
葛辉辉完成签到,获得积分10
15秒前
李健应助xi采纳,获得10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149