Multi-virtual View Scoring Network for 3D Hand Pose Estimation from a Single Depth Image

计算机科学 特征(语言学) 人工智能 计算机视觉 偏移量(计算机科学) 姿势 过程(计算) 虚拟映像 编码(内存) 点云 架空(工程) 模式识别(心理学) 哲学 语言学 程序设计语言 操作系统
作者
Yingli Tian,Chen Li,Tian Lan
出处
期刊:Communications in computer and information science 卷期号:: 147-164
标识
DOI:10.1007/978-981-99-9109-9_15
摘要

3D hand pose estimation is a crucial subject in the domain of computer vision. Recently researchers transform a single depth image into multiple virtual view depth images. By projecting a single depth image through point cloud transformation and using the depth images of multiple virtual views together for hand pose estimation, these methods can effectively improve the estimation accuracy. However, current methods have issues with distorted generated depth images, insufficient usage of the depth image of each view, and high computational overhead. To overcome these problems, we introduce a multi-virtual view scoring network (MVSN). Our proposed MVSN consists of a single virtual view estimation module, virtual view feature encoding module, and virtual view scoring module. To generate an intermediate feature map suitable for virtual view scoring, the single virtual view estimation module uses a feature map offset loss function and enhance information interaction between channels in the backbone network. The virtual view feature encoding module adopts a two-branch structure to capture information about all joints and single joints from the intermediate feature map, respectively. This structure effectively improves model sensitivity to each view, better integrates information from each virtual view, and obtains a more appropriate scoring feature for each virtual view. The virtual view scoring module scores each view based on the scoring feature, and gives a higher score to the more accurately estimated virtual view. We also propose a dynamic virtual view removal strategy to remove poor quality views in the training process. Our model is tested on the NYU and ICVL datasets, and the mean joint error is 6.21 mm and 4.53 mm, respectively, exhibiting better estimation accuracy than existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lhhhh完成签到 ,获得积分10
3秒前
Maple0808完成签到 ,获得积分10
5秒前
Ldq发布了新的文献求助30
7秒前
sure完成签到,获得积分10
9秒前
可靠的公爵熊完成签到,获得积分10
10秒前
12秒前
13秒前
MG_XSJ完成签到,获得积分10
14秒前
14秒前
lalaheilala完成签到 ,获得积分10
16秒前
悦悦发布了新的文献求助10
17秒前
KK发布了新的文献求助10
18秒前
科研通AI2S应助杨青月采纳,获得10
29秒前
36秒前
李火火火完成签到,获得积分10
37秒前
小洪俊熙发布了新的文献求助10
40秒前
杨青月完成签到,获得积分10
40秒前
41秒前
TOM龙发布了新的文献求助10
41秒前
李火火火发布了新的文献求助10
43秒前
科研通AI2S应助jyy采纳,获得10
44秒前
完美世界应助whh123采纳,获得10
46秒前
46秒前
Axel完成签到,获得积分10
47秒前
50秒前
赵雪萌发布了新的文献求助10
51秒前
销户完成签到 ,获得积分10
54秒前
55秒前
55秒前
怕孤独的修杰完成签到 ,获得积分10
55秒前
56秒前
romme发布了新的文献求助10
1分钟前
whh123发布了新的文献求助10
1分钟前
乐乐应助啵啵采纳,获得80
1分钟前
romme完成签到,获得积分10
1分钟前
赵雪萌完成签到,获得积分10
1分钟前
泥娃娃完成签到,获得积分10
1分钟前
1分钟前
ueeee关注了科研通微信公众号
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3370467
求助须知:如何正确求助?哪些是违规求助? 2989086
关于积分的说明 8733718
捐赠科研通 2672039
什么是DOI,文献DOI怎么找? 1463810
科研通“疑难数据库(出版商)”最低求助积分说明 677315
邀请新用户注册赠送积分活动 668542