Mesocrystallinely stabilized lithium storage in high-entropy oxides

材料科学 锂(药物) 化学工程 纳米技术 无机化学 医学 化学 工程类 内分泌学
作者
Wei Wang,Wenjun Song,Yanshuai Li,Yaqing Guo,Keqin Yang,Lianghao Yu,Furong Xie,Qingqing Ren,Kun He,Shun Wang,Yifei Yuan
出处
期刊:Nano Energy [Elsevier]
卷期号:: 109482-109482 被引量:7
标识
DOI:10.1016/j.nanoen.2024.109482
摘要

High-entropy oxides (HEOs) have received growing recognition as an anode candidate for lithium-ion batteries, primarily attributed to their decent lithium storage capabilities and high cycling durability. However, the underlying lithium storage mechanism of HEOs remains ambiguous, particularly the origins for their high structural stability, necessitating more comprehensive investigations. In this research, the working mechanisms of one representative HEO anode, the rock salt-structured Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O, are explored via state-of-the-art in-situ characterizations. Findings point to an interesting mesocrystal-stabilized lithium-ion storage mechanism responsible for maintaining the structural stability of HEOs during cycling, where, upon lithiation, Mg2+ remains electrochemically inactive within the oxygen lattice to stabilize the overall oxide framework. Co and Zn can be reversibly reduced/oxidized upon (de)lithiation, contributing to the electrochemical capacity; while for Cu and Ni, once reduced to metallic state under a relatively high current density, could not be re-oxidized but interconnect to form an electron-conductive network through the HEO body, contributing for the decent lithium-storage performance. Such feature depends on the applied current density, i.e. when decreasing the current, Ni regains its redox capability upon cycling with only Cu0 sustaining the conductive metallic network. This work is expected to serve as a benchmark for structurally and compositionally designing the next-generation high-entropy electrode materials for lithium storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gao完成签到,获得积分10
2秒前
感动语蝶发布了新的文献求助30
2秒前
jiwawa关注了科研通微信公众号
3秒前
4秒前
4秒前
浩浩发布了新的文献求助10
5秒前
舒适的富完成签到,获得积分10
6秒前
忧伤的冰淇淋关注了科研通微信公众号
6秒前
6秒前
英姑应助一原君采纳,获得10
6秒前
8秒前
yiyiyi发布了新的文献求助10
8秒前
学会了吗完成签到,获得积分10
9秒前
10秒前
morena发布了新的文献求助30
11秒前
11秒前
zynim1028完成签到,获得积分10
12秒前
小马甲应助水三寿采纳,获得10
12秒前
gao发布了新的文献求助10
13秒前
祝笑柳完成签到,获得积分10
13秒前
张子烜发布了新的文献求助10
14秒前
迷路白曼完成签到,获得积分10
15秒前
16秒前
16秒前
李佳欣发布了新的文献求助10
17秒前
17秒前
18秒前
jiwawa发布了新的文献求助10
18秒前
19秒前
firewater关注了科研通微信公众号
20秒前
ww发布了新的文献求助10
21秒前
J_C_Van完成签到,获得积分10
22秒前
花道发布了新的文献求助10
22秒前
23秒前
24秒前
r921192发布了新的文献求助10
25秒前
ECCE713发布了新的文献求助10
26秒前
研友_n2B1qn发布了新的文献求助10
27秒前
RockLee发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721