Mesocrystallinely stabilized lithium storage in high-entropy oxides

材料科学 阳极 锂(药物) 电化学 导电体 储能 电极 氧化还原 化学工程 纳米技术 无机化学 冶金 复合材料 热力学 物理化学 医学 化学 工程类 内分泌学 功率(物理) 物理
作者
Wei Wang,Wenjun Song,Yanshuai Li,Yaqing Guo,Keqin Yang,Lianghao Yu,Furong Xie,Qingqing Ren,Kun He,Shun Wang,Yifei Yuan
出处
期刊:Nano Energy [Elsevier BV]
卷期号:124: 109482-109482 被引量:19
标识
DOI:10.1016/j.nanoen.2024.109482
摘要

High-entropy oxides (HEOs) have received growing recognition as an anode candidate for lithium-ion batteries, primarily attributed to their decent lithium storage capabilities and high cycling durability. However, the underlying lithium storage mechanism of HEOs remains ambiguous, particularly the origins for their high structural stability, necessitating more comprehensive investigations. In this research, the working mechanisms of one representative HEO anode, the rock salt-structured Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O, are explored via state-of-the-art in-situ characterizations. Findings point to an interesting mesocrystal-stabilized lithium-ion storage mechanism responsible for maintaining the structural stability of HEOs during cycling, where, upon lithiation, Mg2+ remains electrochemically inactive within the oxygen lattice to stabilize the overall oxide framework. Co and Zn can be reversibly reduced/oxidized upon (de)lithiation, contributing to the electrochemical capacity; while for Cu and Ni, once reduced to metallic state under a relatively high current density, could not be re-oxidized but interconnect to form an electron-conductive network through the HEO body, contributing for the decent lithium-storage performance. Such feature depends on the applied current density, i.e. when decreasing the current, Ni regains its redox capability upon cycling with only Cu0 sustaining the conductive metallic network. This work is expected to serve as a benchmark for structurally and compositionally designing the next-generation high-entropy electrode materials for lithium storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助wzc采纳,获得30
刚刚
1秒前
vocuong发布了新的文献求助10
1秒前
NexusExplorer应助errui采纳,获得10
2秒前
2秒前
2秒前
年轻的茗茗完成签到,获得积分10
3秒前
3秒前
烛光关注了科研通微信公众号
4秒前
5秒前
5秒前
555557应助nobody采纳,获得10
6秒前
充电宝应助碧蓝烨霖采纳,获得10
6秒前
wenhao发布了新的文献求助10
6秒前
7秒前
奶油小饼干完成签到,获得积分10
7秒前
hh发布了新的文献求助10
7秒前
今后应助yxf采纳,获得10
7秒前
yuC完成签到,获得积分10
7秒前
www完成签到 ,获得积分10
8秒前
麦克完成签到,获得积分10
8秒前
8秒前
天天开心发布了新的文献求助30
8秒前
8秒前
8秒前
我是老大应助Hexagram采纳,获得10
9秒前
9秒前
Hello应助Steven采纳,获得10
10秒前
10秒前
10秒前
10秒前
嘿撒发布了新的文献求助10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
lihuahui发布了新的文献求助10
13秒前
ED应助RosyBai采纳,获得10
14秒前
lotus完成签到 ,获得积分10
14秒前
仿生人发布了新的文献求助10
14秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516