Identification of dynamic changes in volatile compounds and metabolites during the smoking process of Zhenba bacon by GC-IMS combined metabolomics

风味 化学 代谢组学 赖氨酸 氨基酸 新陈代谢 食品科学 色谱法 生物化学
作者
Shuai Han,Meiling Ke,Ling Wang,Haidong Ma,Guofei Wu,Lianxu Zhu,Tao Zhang,Hongzhao Lu
出处
期刊:Food Research International [Elsevier]
卷期号:182: 114197-114197 被引量:5
标识
DOI:10.1016/j.foodres.2024.114197
摘要

Zhenba bacon is a traditional cured bacon product with a rich history that originated from Zhenba County, Shaanxi Province. This study aimed to investigate the patterns of volatile compound formation and changes in metabolites during the smoking process in Zhenba bacon. Firstly, the sensory properties and physicochemical properties of Zhenba bacon were analyzed. Gas chromatography-ion mobility spectrometry (GC-IMS) and nontargeted metabolomics technology were used to analyze Zhenba bacon from different smoking stages. The results show a gradual increase in the sensory acceptance and volatile flavor compounds such as aldehydes, ketones, and esters with the prolongation of smoking of Zhenba bacon. LC-MS analysis identified 191 co-expressed differentially metabolites, with amino acid and lipid metabolism being the main metabolic pathways according to KEGG enrichment analysis. Temporal expression analysis of bacon metabolites at each stage revealed a decrease in harmful steroid hormones such as cortisone and an increase in amino acids and lipid metabolites, such as arginine, lysine, acid, and cholesterol, that contribute to the flavor of bacon. In summary, duration of smoking increased, the amount of flavor substances in Zhenba bacon gradually increased, and the safety and quality of bacon reached the optimal level after 32 days of smoking. This study provides valuable insights into the dynamic changes in volatile flavor compounds in Zhenba bacon and establishes a theoretical foundation for quality control during its production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助外向访卉采纳,获得10
刚刚
1秒前
lucia5354给lucia5354的求助进行了留言
1秒前
1秒前
英姑应助PPFF采纳,获得10
1秒前
CH发布了新的文献求助10
2秒前
猪猪小弟完成签到,获得积分10
2秒前
马丽发布了新的文献求助10
3秒前
3秒前
zachary发布了新的文献求助10
4秒前
科研通AI2S应助sisyphus_yy采纳,获得10
4秒前
4秒前
5秒前
花成花发布了新的文献求助10
5秒前
兴奋姒发布了新的文献求助10
6秒前
科目三应助dashuaib采纳,获得10
8秒前
彭于彦祖应助tt采纳,获得30
8秒前
8秒前
奋斗映寒发布了新的文献求助10
8秒前
sss完成签到,获得积分10
8秒前
9秒前
子枫发布了新的文献求助10
9秒前
jhope应助lhp采纳,获得10
9秒前
9秒前
为止完成签到,获得积分10
9秒前
SciGPT应助岄岒yq采纳,获得10
10秒前
10秒前
yy完成签到 ,获得积分10
10秒前
11秒前
Ploaris发布了新的文献求助10
12秒前
12秒前
mhl11应助科研通管家采纳,获得20
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
mhl11应助科研通管家采纳,获得20
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296818
求助须知:如何正确求助?哪些是违规求助? 2932518
关于积分的说明 8457314
捐赠科研通 2605021
什么是DOI,文献DOI怎么找? 1422147
科研通“疑难数据库(出版商)”最低求助积分说明 661308
邀请新用户注册赠送积分活动 644397