清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Smart wearable insoles in industrial environments: A systematic review

可穿戴计算机 可穿戴技术 计算机科学 支持向量机 随机森林 机器学习 生产力 人工智能 工程类 嵌入式系统 经济 宏观经济学
作者
Masoud Abdollahi,Quan Zhou,Wei Yuan
出处
期刊:Applied Ergonomics [Elsevier BV]
卷期号:118: 104250-104250 被引量:4
标识
DOI:10.1016/j.apergo.2024.104250
摘要

Industrial environments present unique challenges in ensuring worker safety and optimizing productivity. The emergence of smart wearable technologies such as smart insoles has provided new opportunities to address these challenges through accurate unobtrusive monitoring and analysis of workers' activities and physical parameters. This systematic review aims to analyze the utilization of smart wearable insoles in industrial environments, focusing on their applications, employed analysis methods, and potential future directions. A comprehensive review was conducted, involving the analysis of 27 papers that utilized smart wearable insoles in industrial settings. The reviewed articles were evaluated to determine the trends in application and methodology, explore the implementation of smart insoles across different industries, and identify the prevalent machine learning models and analyzed activities in the relevant literature. The majority of the reviewed articles (67%) primarily focused on human activity recognition and gesture estimation using smart wearable insoles, aiming to enhance safety and productivity in industrial settings. Furthermore, 10% of the studies focused on fatigue identification, 10% on slip, trip, and fall hazard detection, and 13% on biomechanical analyses of workers' body joint loads. The construction industry accounted for approximately 60% of the studies conducted in industrial settings using smart insoles. The most prevalent machine learning models utilized in these studies were neural networks (48%), support vector machines (33%), k-nearest neighbors (30%), decision trees (26%), and random forests (15%). These models achieved median accuracies of 95%, 96%, 91%, 92%, and 95%, respectively. Among the analyzed activities, walking, bending with/without lifting/lowering a load, and carrying a load were the most frequently considered, with frequencies of 10, 10, and 7 out of the 27 studies, respectively. The findings of this systematic review demonstrate the growing interest in implementing smart wearable insoles in industrial environments to enhance safety and productivity. However, the effectiveness of these systems is dependent on factors such as accuracy, reliability, and generalizability of the models. The review highlights the need for further research to address these challenges and to explore the potential of these systems for use in other industrial applications such as manufacturing. Overall, this systematic review provides valuable insights for researchers, practitioners, and policymakers in the field of occupational health and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意竺完成签到,获得积分10
7秒前
zzhui完成签到,获得积分10
20秒前
和春住完成签到,获得积分10
26秒前
番茄小超人2号完成签到 ,获得积分10
47秒前
长大水果完成签到,获得积分20
50秒前
zyjsunye完成签到 ,获得积分0
1分钟前
YZ完成签到 ,获得积分10
1分钟前
Tong完成签到,获得积分0
1分钟前
jlwang完成签到,获得积分10
1分钟前
minuxSCI完成签到,获得积分10
1分钟前
HCCha完成签到,获得积分10
1分钟前
沉沉完成签到 ,获得积分0
1分钟前
小李完成签到 ,获得积分10
1分钟前
派大星完成签到 ,获得积分10
1分钟前
DJ_Tokyo完成签到,获得积分10
1分钟前
lily完成签到 ,获得积分10
2分钟前
研友_GZ3zRn完成签到 ,获得积分0
2分钟前
2分钟前
孙老师完成签到 ,获得积分10
2分钟前
yw发布了新的文献求助10
2分钟前
lovexa完成签到,获得积分10
2分钟前
Ava应助yw采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
潘fujun完成签到 ,获得积分10
3分钟前
浮云完成签到 ,获得积分10
3分钟前
vsvsgo完成签到,获得积分10
3分钟前
袁雪蓓完成签到 ,获得积分10
3分钟前
任性茉莉完成签到,获得积分10
4分钟前
我是老大应助神勇的天问采纳,获得10
4分钟前
4分钟前
和谐的夏岚完成签到 ,获得积分10
4分钟前
通科研完成签到 ,获得积分10
4分钟前
666完成签到 ,获得积分10
4分钟前
曲聋五完成签到 ,获得积分10
5分钟前
科研通AI5应助笑面客采纳,获得10
5分钟前
5分钟前
爆米花应助无机盐采纳,获得10
5分钟前
笑面客发布了新的文献求助10
5分钟前
眯眯眼的安雁完成签到 ,获得积分10
6分钟前
GankhuyagJavzan完成签到,获得积分10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746201
求助须知:如何正确求助?哪些是违规求助? 3289015
关于积分的说明 10061755
捐赠科研通 3005280
什么是DOI,文献DOI怎么找? 1650193
邀请新用户注册赠送积分活动 785753
科研通“疑难数据库(出版商)”最低求助积分说明 751258