Versatile MRI acquisition and processing protocol for population‐based neuroimaging

计算机科学 协议(科学) 神经影像学 人工智能 工作流程 人口 管道(软件) 磁共振成像 数据采集 机器学习 数据挖掘 医学 放射科 数据库 病理 替代医学 环境卫生 精神科 程序设计语言 操作系统
作者
Alexandra Koch,Rüdiger Stirnberg,Santiago Estrada,Weiyi Zeng,Valerie Lohner,M. Shahid,Philipp Ehses,Eberhard Pracht,Martin Reuter,Tony Stoecker,Monique M.B. Breteler
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:19 (S10)
标识
DOI:10.1002/alz.081914
摘要

Abstract Background Neuroimaging plays an essential role in epidemiological studies and a special focus is directed towards the employment of versatile MRI acquisition and processing. The proposed multi‐purpose MRI protocol was designed for large‐scale and long‐term population neuroimaging and includes structural, diffusion‐weighted, and functional MRI modalities. It directly links the acquisition of an extensive set of MRI contrasts with fully automated data processing pipelines and quality assurance of the MRI data and image‐derived phenotypes. Method The MRI acquisition protocol is largely based on in‐house developed MR sequences. With a total scan time below one hour per participant, it allows to acquire multiple MR contrasts at 3T with whole‐brain coverage and high isotropic image resolution, while keeping potential subject discomfort and motion artifacts at manageable levels. Designed to be kept constant, but also adaptive, the scan protocol separates into a core imaging protocol with MR contrasts of high relevance acquired for all study participants, and a free protocol to accommodate alternative promising MRI techniques in smaller sub‐populations. The analysis protocol handles large‐scale imaging data by means of fast and fully automated processing pipelines that incorporate state‐of‐the‐art image analysis tools and innovative machine learning methods, particularly using deep learning. Dedicated quality assessment (QA) includes visual rating and inspection for incidental findings on structural MRI and QA workflows tailored for each postprocessing pipeline to automatically identify problematic data based on the distribution of subject‐specific QA metrics with respect to the population average. Result The MRI protocol has been successfully applied in the Rhineland Study, a prospective cohort study in Bonn, Germany, with currently over 10,000 participants. Image‐derived phenotypes include: global and regional brain tissue volume, thickness and surface measures from multi‐modal structural MRI, global and regional microstructural measures based on diffusion‐weighted MRI, brain functional connectivity using resting‐state functional MRI, and volumes of subcutaneous and visceral adipose tissue based on a single‐breathhold abdominal MRI (Figure 1). Conclusion We present a versatile MRI protocol with acquisition and analysis methods that are generally applicable and not geared towards a specific disease or research question. Thus, this protocol may be of specific interest for many neuroimaging applications including population imaging studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
性感母蟑螂完成签到 ,获得积分10
1秒前
张靖松完成签到 ,获得积分20
1秒前
1秒前
甜美的觅荷完成签到,获得积分10
1秒前
1秒前
云书完成签到 ,获得积分10
2秒前
ZZ应助Henry采纳,获得10
3秒前
3秒前
窗窗窗雨完成签到,获得积分10
3秒前
小安完成签到,获得积分10
3秒前
Ryan完成签到 ,获得积分10
4秒前
liu完成签到,获得积分10
4秒前
lidagou发布了新的文献求助10
5秒前
搬砖美少女完成签到,获得积分10
5秒前
wxt完成签到,获得积分10
6秒前
7秒前
隔壁的邻家小兴完成签到,获得积分10
7秒前
星辰大海应助拼搏vv采纳,获得10
8秒前
程传勇发布了新的文献求助10
8秒前
chx123完成签到,获得积分10
9秒前
9秒前
10秒前
葛稀完成签到,获得积分10
10秒前
你好完成签到,获得积分10
11秒前
HFW完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
orixero应助lidagou采纳,获得10
15秒前
慕青应助坦率的之卉采纳,获得10
16秒前
星之发布了新的文献求助10
16秒前
16秒前
求助发布了新的文献求助10
16秒前
JamesPei应助芳芳采纳,获得10
18秒前
孙刚完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
顾矜应助巴山石也采纳,获得10
22秒前
彭于晏应助碧蓝青梦采纳,获得10
23秒前
rodrisk完成签到 ,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224