Predicting Four-Year’s Alzheimer’s Disease Onset Using Longitudinal Neurocognitive Tests and MRI Data Using Explainable Deep Convolutional Neural Networks

神经认知 神经影像学 痴呆 卷积神经网络 人工智能 深度学习 认知 纵向研究 计算机科学 特征(语言学) 机器学习 物理医学与康复 疾病 医学 心理学 神经科学 内科学 病理 语言学 哲学
作者
Rohan Bapat,Da Ma,Timothy Q. Duong
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:97 (1): 459-469 被引量:1
标识
DOI:10.3233/jad-230893
摘要

Background: Prognosis of future risk of dementia from neuroimaging and cognitive data is important for optimizing clinical management for patients at early stage of Alzheimer’s disease (AD). However, existing studies lack an efficient way to integrate longitudinal information from both modalities to improve prognosis performance. Objective: In this study, we aim to develop and evaluate an explainable deep learning-based framework to predict mild cognitive impairment (MCI) to AD conversion within four years using longitudinal whole-brain 3D MRI and neurocognitive tests. Methods: We proposed a two-stage framework that first uses a 3D convolutional neural network to extract single-timepoint MRI-based AD-related latent features, followed by multi-modal longitudinal feature concatenation and a 1D convolutional neural network to predict the risk of future dementia onset in four years. Results: The proposed deep learning framework showed promising to predict MCI to AD conversion within 4 years using longitudinal whole-brain 3D MRI and cognitive data without extracting regional brain volumes or cortical thickness, reaching a balanced accuracy of 0.834, significantly improved from models trained from single timepoint or single modality. The post hoc model explainability revealed heatmap indicating regions that are important for predicting future risk of AD. Conclusions: The proposed framework sets the stage for future studies for using multi-modal longitudinal data to achieve optimal prediction for prognosis of AD onset, leading to better management of the diseases, thereby improving the quality of life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科烟生完成签到,获得积分10
刚刚
刚刚
Hoyshin应助Betty采纳,获得10
刚刚
刚刚
多伶俐完成签到,获得积分10
1秒前
Fiee发布了新的文献求助10
1秒前
友好的夏之完成签到,获得积分10
1秒前
1秒前
大饼哥完成签到,获得积分10
1秒前
1秒前
ailyna完成签到,获得积分10
2秒前
丘比特应助隐形的语海采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助50
3秒前
wanci应助想早点退休采纳,获得10
3秒前
3秒前
天天快乐应助学术虫采纳,获得10
4秒前
完美世界应助冬瓜熊采纳,获得10
4秒前
科研通AI5应助理工采纳,获得10
4秒前
5秒前
玩伴zz发布了新的文献求助10
5秒前
微微发布了新的文献求助10
6秒前
orixero应助jibo采纳,获得10
6秒前
7秒前
英勇明雪完成签到,获得积分10
7秒前
高尚发布了新的文献求助10
7秒前
8秒前
8秒前
郭泓嵩完成签到,获得积分10
8秒前
8秒前
Hello应助橘子汽水采纳,获得10
8秒前
彭冬华发布了新的文献求助10
9秒前
jajjjjaa完成签到,获得积分20
9秒前
10秒前
11秒前
TNT应助猪猪hero采纳,获得10
11秒前
11秒前
12365发布了新的文献求助10
12秒前
烧炉工发布了新的文献求助10
12秒前
东C东C发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602543
求助须知:如何正确求助?哪些是违规求助? 4011718
关于积分的说明 12420126
捐赠科研通 3691980
什么是DOI,文献DOI怎么找? 2035389
邀请新用户注册赠送积分活动 1068540
科研通“疑难数据库(出版商)”最低求助积分说明 953098