作者
Sushmit Das,Reza Zomorrodi,Melissa Kirkovski,Aron T. Hill,Peter G. Enticott,Yoshihiro Noda,Tarek K. Rajji,Pushpal Desarkar
摘要
Electroencephalogram (EEG) microstates, which represent quasi-stable patterns of scalp topography, are a promising tool that has the temporal resolution to study atypical spatial and temporal networks in autism spectrum disorder (ASD). While current literature suggests microstates are atypical in ASD, their clinical utility, i.e., relationship with the core behavioural characteristics of ASD, is not fully understood. The aim of this study was to examine microstate parameters in ASD, and examine the relationship between these parameters and core behavioural characteristics in ASD. We compared duration, occurrence, coverage, global explained variance percentage, global field power and spatial correlation of EEG microstates between autistic and neurotypical (NT) adults. Modified k-means cluster analysis was used on eyes-closed, resting state EEG from 30 ASD (10 females, 28.97 ± 9.34 years) and 30 age-equated NT (13 females, 29.33 ± 8.88 years) adults. Five optimal microstates, A to E, were selected to best represent the data. Five microstate maps explaining 80.44% of the NT and 78.44% of the ASD data were found. The ASD group was found to have atypical parameters of microstate A, C, D, and E. Of note, all parameters of microstate C in the ASD group were found to be significantly less than NT. While parameters of microstate D, and E were also found to significantly correlate with subscales of the Ritvo Autism Asperger Diagnostic Scale – Revised (RAADS-R), these findings did not survive a Bonferroni Correction. These findings, in combination with previous findings, highlight the potential clinical utility of EEG microstates and indicate their potential value as a neurophysiologic marker that can be further studied.