Improving imbalance classification via ensemble learning based on two-stage learning

计算机科学 人工智能 协变量 机器学习 班级(哲学) 罗伊特 集成学习 人工神经网络 逻辑回归
作者
Na Liu,Jiaqi Wang,Yuexin Zhu,Lihong Wan,Qingdu Li
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media]
卷期号:17
标识
DOI:10.3389/fncom.2023.1296897
摘要

The excellent performance of deep neural networks on image classification tasks depends on a large-scale high-quality dataset. However, the datasets collected from the real world are typically biased in their distribution, which will lead to a sharp decline in model performance, mainly because an imbalanced distribution results in the prior shift and covariate shift. Recent studies have typically used a two-stage learning method consisting of two rebalancing strategies to solve these problems, but the combination of partial rebalancing strategies will damage the representational ability of the networks. In addition, the two-stage learning method is of little help in addressing the problem of covariate shift. To solve the above two issues, we first propose a sample logit-aware reweighting method called (SLA), which can not only repair the weights of majority class hard samples and minority class samples but will also integrate with logit adjustment to form a stable two-stage learning strategy. Second, to solve the covariate shift problem, inspired by ensemble learning, we propose a multi-domain expert specialization model, which can achieve a more comprehensive decision by averaging expert classification results from multiple different domains. Finally, we combine SLA and logit adjustment into a two-stage learning method and apply our model to the CIFAR-LT and ImageNet-LT datasets. Compared with the most advanced methods, our experimental results show excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱香槟发布了新的文献求助10
1秒前
惠小之发布了新的文献求助10
3秒前
乐乐应助孟醒采纳,获得10
3秒前
秋殇浅寞完成签到,获得积分0
3秒前
banlichen完成签到,获得积分10
6秒前
森77完成签到,获得积分10
8秒前
8秒前
所所应助牛牛眉目采纳,获得50
9秒前
惠小之完成签到,获得积分10
11秒前
11秒前
LeonZhang发布了新的文献求助10
15秒前
easymoney完成签到,获得积分20
15秒前
丘比特应助awerguio采纳,获得10
16秒前
16秒前
doudou发布了新的文献求助10
17秒前
万叶关注了科研通微信公众号
20秒前
果冻完成签到 ,获得积分10
21秒前
学术大白发布了新的文献求助10
21秒前
25秒前
李健应助苹果秋灵采纳,获得10
25秒前
26秒前
一口蒜苗完成签到,获得积分10
26秒前
28秒前
城南完成签到,获得积分10
29秒前
英俊的铭应助牛牛眉目采纳,获得10
29秒前
李文霄完成签到 ,获得积分10
29秒前
打打应助研友_kngxbZ采纳,获得10
30秒前
江念发布了新的文献求助30
31秒前
Chambray完成签到,获得积分10
31秒前
Selonfer完成签到,获得积分10
31秒前
33秒前
所所应助banlichen采纳,获得10
33秒前
HHH发布了新的文献求助10
33秒前
Pendragon发布了新的文献求助10
35秒前
充电宝应助加油加油采纳,获得10
37秒前
goldNAN发布了新的文献求助10
39秒前
一棵草完成签到,获得积分10
39秒前
zz应助淡淡的绿柳采纳,获得10
39秒前
42秒前
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388