Improving imbalance classification via ensemble learning based on two-stage learning

计算机科学 人工智能 协变量 机器学习 班级(哲学) 罗伊特 集成学习 人工神经网络 逻辑回归
作者
Na Liu,Jiaqi Wang,Yuexin Zhu,Lihong Wan,Qingdu Li
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media SA]
卷期号:17
标识
DOI:10.3389/fncom.2023.1296897
摘要

The excellent performance of deep neural networks on image classification tasks depends on a large-scale high-quality dataset. However, the datasets collected from the real world are typically biased in their distribution, which will lead to a sharp decline in model performance, mainly because an imbalanced distribution results in the prior shift and covariate shift. Recent studies have typically used a two-stage learning method consisting of two rebalancing strategies to solve these problems, but the combination of partial rebalancing strategies will damage the representational ability of the networks. In addition, the two-stage learning method is of little help in addressing the problem of covariate shift. To solve the above two issues, we first propose a sample logit-aware reweighting method called (SLA), which can not only repair the weights of majority class hard samples and minority class samples but will also integrate with logit adjustment to form a stable two-stage learning strategy. Second, to solve the covariate shift problem, inspired by ensemble learning, we propose a multi-domain expert specialization model, which can achieve a more comprehensive decision by averaging expert classification results from multiple different domains. Finally, we combine SLA and logit adjustment into a two-stage learning method and apply our model to the CIFAR-LT and ImageNet-LT datasets. Compared with the most advanced methods, our experimental results show excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
壮观蓝完成签到 ,获得积分10
1秒前
自然的茉莉完成签到,获得积分10
2秒前
3秒前
4秒前
ckkk发布了新的文献求助10
4秒前
清秀的大山完成签到,获得积分20
4秒前
赘婿应助奔奔采纳,获得10
5秒前
搜集达人应助快乐滑板采纳,获得30
5秒前
CipherSage应助日光下采纳,获得10
7秒前
8秒前
9秒前
简单完成签到,获得积分10
9秒前
闻歌发布了新的文献求助10
10秒前
可爱的函函应助冷静的豪采纳,获得10
10秒前
小二郎应助李麟采纳,获得10
11秒前
打打应助liugm采纳,获得10
11秒前
11秒前
12秒前
阿远发布了新的文献求助10
13秒前
不吝声色发布了新的文献求助10
13秒前
pfffff完成签到,获得积分10
13秒前
123发布了新的文献求助10
13秒前
田様应助snowpaper采纳,获得10
14秒前
悲凉的艳发布了新的文献求助10
14秒前
涨芝士发布了新的文献求助10
14秒前
华仔应助闻歌采纳,获得10
15秒前
研友_Z6Qrbn发布了新的文献求助10
16秒前
16秒前
Jasper应助ling采纳,获得10
16秒前
19秒前
20秒前
20秒前
20秒前
柳冰岚完成签到,获得积分10
21秒前
香蕉觅云应助owlhealth采纳,获得10
22秒前
诸葛翼德完成签到,获得积分10
22秒前
mt完成签到,获得积分10
22秒前
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140783
求助须知:如何正确求助?哪些是违规求助? 2791678
关于积分的说明 7800053
捐赠科研通 2448055
什么是DOI,文献DOI怎么找? 1302292
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210