Improving imbalance classification via ensemble learning based on two-stage learning

计算机科学 人工智能 协变量 机器学习 班级(哲学) 罗伊特 集成学习 人工神经网络 逻辑回归
作者
Na Liu,Jiaqi Wang,Yuexin Zhu,Lihong Wan,Qingdu Li
出处
期刊:Frontiers in Computational Neuroscience [Frontiers Media]
卷期号:17
标识
DOI:10.3389/fncom.2023.1296897
摘要

The excellent performance of deep neural networks on image classification tasks depends on a large-scale high-quality dataset. However, the datasets collected from the real world are typically biased in their distribution, which will lead to a sharp decline in model performance, mainly because an imbalanced distribution results in the prior shift and covariate shift. Recent studies have typically used a two-stage learning method consisting of two rebalancing strategies to solve these problems, but the combination of partial rebalancing strategies will damage the representational ability of the networks. In addition, the two-stage learning method is of little help in addressing the problem of covariate shift. To solve the above two issues, we first propose a sample logit-aware reweighting method called (SLA), which can not only repair the weights of majority class hard samples and minority class samples but will also integrate with logit adjustment to form a stable two-stage learning strategy. Second, to solve the covariate shift problem, inspired by ensemble learning, we propose a multi-domain expert specialization model, which can achieve a more comprehensive decision by averaging expert classification results from multiple different domains. Finally, we combine SLA and logit adjustment into a two-stage learning method and apply our model to the CIFAR-LT and ImageNet-LT datasets. Compared with the most advanced methods, our experimental results show excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
320me666发布了新的文献求助10
2秒前
啊嚯完成签到,获得积分10
2秒前
科研通AI5应助王晓林采纳,获得20
2秒前
完美世界应助好卉采纳,获得10
4秒前
4秒前
深情安青应助笑点低代云采纳,获得10
4秒前
5秒前
慕青应助拼搏凝梦采纳,获得10
5秒前
李健应助拼搏凝梦采纳,获得30
5秒前
CodeCraft应助拼搏凝梦采纳,获得10
5秒前
Owen应助拼搏凝梦采纳,获得10
5秒前
shenpan完成签到,获得积分10
5秒前
徐梓睿应助老实的鞋垫采纳,获得10
7秒前
温暖的沛凝完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
jinyu发布了新的文献求助10
10秒前
11秒前
孟祥勤完成签到,获得积分10
11秒前
must完成签到,获得积分10
12秒前
12秒前
12秒前
320me666完成签到,获得积分10
12秒前
13秒前
13秒前
北风完成签到 ,获得积分10
14秒前
脑洞疼应助lty001采纳,获得10
15秒前
张祥辉发布了新的文献求助10
15秒前
17秒前
17秒前
清秀芝麻发布了新的文献求助10
17秒前
18秒前
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
风犬少年完成签到,获得积分10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590887
求助须知:如何正确求助?哪些是违规求助? 4005393
关于积分的说明 12401290
捐赠科研通 3682607
什么是DOI,文献DOI怎么找? 2029751
邀请新用户注册赠送积分活动 1063215
科研通“疑难数据库(出版商)”最低求助积分说明 948727