亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Document-level relation extraction with global and path dependencies

关系(数据库) 路径(计算) 依赖关系(UML) 图形 计算机科学 判决 关系抽取 情报检索 人工智能 数据挖掘 理论计算机科学 程序设计语言
作者
Jia Wei,Ruizhe Ma,Li Yan,Weinan Niu,Zongmin Ma
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:289: 111545-111545 被引量:5
标识
DOI:10.1016/j.knosys.2024.111545
摘要

Document-level relation extraction (RE) focuses on extracting relations for each entity pair in the same sentence or across different sentences of a document. Several existing methodologies aim to capture the intricate interactions among entities across a document by constructing diverse document graphs. However, these graphs frequently cannot sufficiently model the intricate global interactions and concurrent explicit path reasoning. Therefore, we introduce a distinctive graph-based model designed to assimilate global and path dependencies within a document for document-level RE, termed graph-based global and path dependencies (GGP). Specifically, the global dependency component captures interactions between mentions, entities, sentences and, the document through two interconnected graphs: the mention-level graph and the entity-level graph (ELG). To integrate relevant paths essential for the designated entity pair, the path dependency component consolidates information from various multi-hop paths of the target entity pair through an attention mechanism on the ELG. In addition, we devised an innovative method for learning path representation, which encapsulates relations and intermediate entities within the multi-hop path in the ELG. Comprehensive experiments conducted on standard document-level RE and CDR datasets reveal the following key findings: (i) GGP achieves an Ign F1 score of 59.98%, surpassing baselines by 0.61% on the test set; and (ii) the integration of various features derived from entities, sentences, documents, and paths enhances GGP's performance in document-level RE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
22秒前
Tamako完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
深情安青应助无误采纳,获得10
23秒前
24秒前
发SCI完成签到,获得积分10
25秒前
Tamako发布了新的文献求助10
28秒前
30秒前
无误完成签到,获得积分10
32秒前
无误发布了新的文献求助10
34秒前
Tamako关注了科研通微信公众号
38秒前
111发布了新的文献求助10
48秒前
xjn完成签到,获得积分10
52秒前
橘子的海发布了新的文献求助10
58秒前
在学一会完成签到,获得积分10
1分钟前
qq完成签到 ,获得积分10
1分钟前
852应助33采纳,获得10
1分钟前
浮曳发布了新的文献求助10
1分钟前
Leoon完成签到 ,获得积分10
1分钟前
浮曳完成签到,获得积分10
1分钟前
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Donnie333完成签到,获得积分10
2分钟前
makabaka发布了新的文献求助10
2分钟前
忧郁的火车完成签到,获得积分10
2分钟前
2分钟前
多冰去糖发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463243
求助须知:如何正确求助?哪些是违规求助? 4567987
关于积分的说明 14312228
捐赠科研通 4493862
什么是DOI,文献DOI怎么找? 2461939
邀请新用户注册赠送积分活动 1450930
关于科研通互助平台的介绍 1426140