清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Lymphoma Diagnosis and Classification Using Next Generation Sequencing of 30 CD Markers and Machine Learning As an Alternative to Immunohistochemistry

套细胞淋巴瘤 淋巴瘤 滤泡性淋巴瘤 病理 免疫组织化学 组织微阵列 免疫分型 CD20 CD5型 生物 医学 抗原 免疫学
作者
Maher Albitar,Hong Zhang,Andrew Ip,Wanlong Ma,Jeffrey Justin Estella,Lori A. Leslie,Tatyana Feldman,Ahmad Charifa,Arash Mohtashamian,Andrew L. Pecora,André Goy
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 3665-3665
标识
DOI:10.1182/blood-2023-187534
摘要

Introduction: Lymphoma diagnosis and classification requires pathologist interpretation of morphology and large numbers of immunohistochemistry (IHC) stains of various CD markers. This process is subjective and requires a significant amount of tissue. In contrast, RNA quantification of the same CD markers used in IHC using next generation sequencing (NGS) requires little tissue and is less influenced by the antigen retrieval process used in IHC. However, IHC staining and microscopic examination allows evaluation of the expression in various subpopulations and makes diagnosis possible. In contrast, when total RNA is evaluated by NGS, distinguishing between subpopulations is lost. Machine learning algorithms are capable of multi-marker normalizing and compensate for the loss of subpopulation analysis. To confirm this, we explored the capability of using RNA quantification of 30 CD markers by NGS from FFPE tissue along with machine learning in the clinical diagnosis and classification of various types of lymphoma. Methods: Formalin-fixed paraffin-embedded (FFPE) tissue from 130 diffuse large B-cell lymphoma (DLBCL), 70 mantle cell lymphoma, 92 T-cell lymphoma, 48 follicular lymphoma, 36 Hodgkin lymphoma, and 52 marginal zone lymphoma samples were used for extracting mRNA. The studied samples were consecutive without selection and included mainly lymph node excisional biopsies or core biopsies. RNA sequencing was performed using a targeted hybrid capture panel that included CD1A, CD2, CD3D, CD3E, CD3G, CD4, CD5, CD7, CD8A, CD8B, CD10, CD14, CD19, CD20, CD22, CD33, CD34, CD38, CD40, CD44, CD47, CD68, CD70, CD74, CD79A, CD79B, CD81, CD138, CD200, and CD274 genes. Salmon v1.4.0 software was used for expression quantification (TPM). Random forest machine learning algorithm was used for predicting diagnosis. Randomly selected two thirds of samples were used for training and one third was used for testing. Results: In some cases, diagnosis can be made by simply inspecting the RNA levels of various CD markers. However, machine learning shows remarkably high sensitivity and specificity in the diagnosis of most lymphoma subclasses. Area under the curve (AUC) was at 1.00 (95% CI: 1.000-1.00) for DLBCL vs. T-cell lymphoma, Hodgkin vs. T-cell, Hodgkin vs. DLBCL, mantle vs. DLBCL, and Follicular lymphoma vs. marginal lymphoma with 100% sensitivity and specificity in the testing set. AUC was at 0.974 (95% CI: 0.920-1.000) for marginal lymphoma vs. mantle cell lymphoma with sensitivity of 88% and specificity of 100%. The AUC was at 0.887 (95% CI: 0.776-0.999) for follicular lymphoma vs. DLBCL with sensitivity of 81.3% and specificity of 83.7%. Conclusions: This data demonstrates that NGS quantification of RNA from 30 CD markers when combined with machine learning is adequate for reliable classification of various types of lymphoma. This approach can provide valuable information to distinguish between difficult diagnoses, and if trained adequately has the potential to expand to more borderline cases. More importantly, this technology can be automated and less susceptible to human errors. RNA quantification using NGS has the potential to replace the need for IHC and can be applied when samples are limited such as in needle aspiration or core biopsies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh0发布了新的文献求助10
5秒前
hh0发布了新的文献求助10
16秒前
renpp822发布了新的文献求助10
33秒前
hh0发布了新的文献求助10
34秒前
rio完成签到 ,获得积分10
49秒前
丘比特应助yueyueyahoo采纳,获得20
55秒前
hh0发布了新的文献求助10
1分钟前
hh0发布了新的文献求助10
1分钟前
hh0发布了新的文献求助30
1分钟前
蓝天小小鹰完成签到 ,获得积分10
1分钟前
Tong完成签到,获得积分0
1分钟前
hh0发布了新的文献求助10
1分钟前
hh0发布了新的文献求助30
1分钟前
2分钟前
hh0发布了新的文献求助30
2分钟前
yueyueyahoo发布了新的文献求助20
2分钟前
yueyueyahoo完成签到,获得积分10
2分钟前
maox1aoxin应助hh0采纳,获得30
2分钟前
2分钟前
Bo发布了新的文献求助50
2分钟前
Bo完成签到,获得积分10
2分钟前
小兰应助hh0采纳,获得30
2分钟前
科研通AI2S应助hh0采纳,获得10
3分钟前
科研通AI2S应助hh0采纳,获得10
3分钟前
科研通AI2S应助hh0采纳,获得10
3分钟前
科研通AI2S应助hh0采纳,获得10
3分钟前
科研通AI2S应助hh0采纳,获得10
4分钟前
SC完成签到 ,获得积分10
4分钟前
科研通AI2S应助hh0采纳,获得10
4分钟前
科研通AI2S应助hh0采纳,获得10
4分钟前
领导范儿应助hh0采纳,获得10
5分钟前
ww完成签到,获得积分10
5分钟前
科研通AI2S应助hh0采纳,获得10
5分钟前
若眠完成签到 ,获得积分10
5分钟前
科研通AI2S应助hh0采纳,获得10
5分钟前
5分钟前
科研通AI2S应助hh0采纳,获得10
5分钟前
pluto应助hh0采纳,获得10
6分钟前
科研通AI2S应助hh0采纳,获得10
6分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239003
求助须知:如何正确求助?哪些是违规求助? 2884295
关于积分的说明 8232922
捐赠科研通 2552338
什么是DOI,文献DOI怎么找? 1380690
科研通“疑难数据库(出版商)”最低求助积分说明 649071
邀请新用户注册赠送积分活动 624769