Lymphoma Diagnosis and Classification Using Next Generation Sequencing of 30 CD Markers and Machine Learning As an Alternative to Immunohistochemistry

套细胞淋巴瘤 淋巴瘤 滤泡性淋巴瘤 病理 免疫组织化学 组织微阵列 免疫分型 CD20 CD5型 生物 医学 抗原 免疫学
作者
Maher Albitar,Hong Zhang,Andrew Ip,Wanlong Ma,Jeffrey Justin Estella,Lori A. Leslie,Tatyana Feldman,Ahmad Charifa,Arash Mohtashamian,Andrew L. Pecora,André Goy
出处
期刊:Blood [Elsevier BV]
卷期号:142 (Supplement 1): 3665-3665
标识
DOI:10.1182/blood-2023-187534
摘要

Introduction: Lymphoma diagnosis and classification requires pathologist interpretation of morphology and large numbers of immunohistochemistry (IHC) stains of various CD markers. This process is subjective and requires a significant amount of tissue. In contrast, RNA quantification of the same CD markers used in IHC using next generation sequencing (NGS) requires little tissue and is less influenced by the antigen retrieval process used in IHC. However, IHC staining and microscopic examination allows evaluation of the expression in various subpopulations and makes diagnosis possible. In contrast, when total RNA is evaluated by NGS, distinguishing between subpopulations is lost. Machine learning algorithms are capable of multi-marker normalizing and compensate for the loss of subpopulation analysis. To confirm this, we explored the capability of using RNA quantification of 30 CD markers by NGS from FFPE tissue along with machine learning in the clinical diagnosis and classification of various types of lymphoma. Methods: Formalin-fixed paraffin-embedded (FFPE) tissue from 130 diffuse large B-cell lymphoma (DLBCL), 70 mantle cell lymphoma, 92 T-cell lymphoma, 48 follicular lymphoma, 36 Hodgkin lymphoma, and 52 marginal zone lymphoma samples were used for extracting mRNA. The studied samples were consecutive without selection and included mainly lymph node excisional biopsies or core biopsies. RNA sequencing was performed using a targeted hybrid capture panel that included CD1A, CD2, CD3D, CD3E, CD3G, CD4, CD5, CD7, CD8A, CD8B, CD10, CD14, CD19, CD20, CD22, CD33, CD34, CD38, CD40, CD44, CD47, CD68, CD70, CD74, CD79A, CD79B, CD81, CD138, CD200, and CD274 genes. Salmon v1.4.0 software was used for expression quantification (TPM). Random forest machine learning algorithm was used for predicting diagnosis. Randomly selected two thirds of samples were used for training and one third was used for testing. Results: In some cases, diagnosis can be made by simply inspecting the RNA levels of various CD markers. However, machine learning shows remarkably high sensitivity and specificity in the diagnosis of most lymphoma subclasses. Area under the curve (AUC) was at 1.00 (95% CI: 1.000-1.00) for DLBCL vs. T-cell lymphoma, Hodgkin vs. T-cell, Hodgkin vs. DLBCL, mantle vs. DLBCL, and Follicular lymphoma vs. marginal lymphoma with 100% sensitivity and specificity in the testing set. AUC was at 0.974 (95% CI: 0.920-1.000) for marginal lymphoma vs. mantle cell lymphoma with sensitivity of 88% and specificity of 100%. The AUC was at 0.887 (95% CI: 0.776-0.999) for follicular lymphoma vs. DLBCL with sensitivity of 81.3% and specificity of 83.7%. Conclusions: This data demonstrates that NGS quantification of RNA from 30 CD markers when combined with machine learning is adequate for reliable classification of various types of lymphoma. This approach can provide valuable information to distinguish between difficult diagnoses, and if trained adequately has the potential to expand to more borderline cases. More importantly, this technology can be automated and less susceptible to human errors. RNA quantification using NGS has the potential to replace the need for IHC and can be applied when samples are limited such as in needle aspiration or core biopsies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
邹逢源完成签到,获得积分10
1秒前
笨笨的乐驹完成签到,获得积分10
1秒前
陌上之心发布了新的文献求助10
1秒前
田様应助新八采纳,获得10
1秒前
1秒前
动人的铃铛完成签到,获得积分10
2秒前
2秒前
轻松金毛发布了新的文献求助10
2秒前
2秒前
朱莉发布了新的文献求助20
2秒前
隐形的巴豆完成签到,获得积分10
2秒前
谭耀给谭耀的求助进行了留言
3秒前
QQ发布了新的文献求助10
3秒前
kai发布了新的文献求助10
4秒前
jenningseastera应助sweat采纳,获得10
4秒前
ljforever完成签到,获得积分10
4秒前
4秒前
4秒前
zy发布了新的文献求助10
5秒前
5秒前
活泼水桃发布了新的文献求助10
5秒前
喜洋洋完成签到,获得积分10
5秒前
cst发布了新的文献求助10
5秒前
胡沐恬完成签到,获得积分10
6秒前
6秒前
2021完成签到 ,获得积分10
6秒前
jun发布了新的文献求助10
6秒前
华仔应助大白不白采纳,获得10
7秒前
ddddansu完成签到,获得积分20
8秒前
8秒前
8秒前
badada完成签到,获得积分10
8秒前
鱼香丸子应助杨wen采纳,获得20
8秒前
智勇双全发布了新的文献求助10
8秒前
科研通AI5应助weilanhaian采纳,获得10
9秒前
513完成签到,获得积分10
9秒前
DrPanda完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4616113
求助须知:如何正确求助?哪些是违规求助? 4019457
关于积分的说明 12442484
捐赠科研通 3702637
什么是DOI,文献DOI怎么找? 2041737
邀请新用户注册赠送积分活动 1074341
科研通“疑难数据库(出版商)”最低求助积分说明 957952