Lymphoma Diagnosis and Classification Using Next Generation Sequencing of 30 CD Markers and Machine Learning As an Alternative to Immunohistochemistry

套细胞淋巴瘤 淋巴瘤 滤泡性淋巴瘤 病理 免疫组织化学 组织微阵列 免疫分型 CD20 CD5型 生物 医学 抗原 免疫学
作者
Maher Albitar,Hong Zhang,Andrew Ip,Wanlong Ma,Jeffrey Justin Estella,Lori A. Leslie,Tatyana Feldman,Ahmad Charifa,Arash Mohtashamian,Andrew L. Pecora,André Goy
出处
期刊:Blood [Elsevier BV]
卷期号:142 (Supplement 1): 3665-3665
标识
DOI:10.1182/blood-2023-187534
摘要

Introduction: Lymphoma diagnosis and classification requires pathologist interpretation of morphology and large numbers of immunohistochemistry (IHC) stains of various CD markers. This process is subjective and requires a significant amount of tissue. In contrast, RNA quantification of the same CD markers used in IHC using next generation sequencing (NGS) requires little tissue and is less influenced by the antigen retrieval process used in IHC. However, IHC staining and microscopic examination allows evaluation of the expression in various subpopulations and makes diagnosis possible. In contrast, when total RNA is evaluated by NGS, distinguishing between subpopulations is lost. Machine learning algorithms are capable of multi-marker normalizing and compensate for the loss of subpopulation analysis. To confirm this, we explored the capability of using RNA quantification of 30 CD markers by NGS from FFPE tissue along with machine learning in the clinical diagnosis and classification of various types of lymphoma. Methods: Formalin-fixed paraffin-embedded (FFPE) tissue from 130 diffuse large B-cell lymphoma (DLBCL), 70 mantle cell lymphoma, 92 T-cell lymphoma, 48 follicular lymphoma, 36 Hodgkin lymphoma, and 52 marginal zone lymphoma samples were used for extracting mRNA. The studied samples were consecutive without selection and included mainly lymph node excisional biopsies or core biopsies. RNA sequencing was performed using a targeted hybrid capture panel that included CD1A, CD2, CD3D, CD3E, CD3G, CD4, CD5, CD7, CD8A, CD8B, CD10, CD14, CD19, CD20, CD22, CD33, CD34, CD38, CD40, CD44, CD47, CD68, CD70, CD74, CD79A, CD79B, CD81, CD138, CD200, and CD274 genes. Salmon v1.4.0 software was used for expression quantification (TPM). Random forest machine learning algorithm was used for predicting diagnosis. Randomly selected two thirds of samples were used for training and one third was used for testing. Results: In some cases, diagnosis can be made by simply inspecting the RNA levels of various CD markers. However, machine learning shows remarkably high sensitivity and specificity in the diagnosis of most lymphoma subclasses. Area under the curve (AUC) was at 1.00 (95% CI: 1.000-1.00) for DLBCL vs. T-cell lymphoma, Hodgkin vs. T-cell, Hodgkin vs. DLBCL, mantle vs. DLBCL, and Follicular lymphoma vs. marginal lymphoma with 100% sensitivity and specificity in the testing set. AUC was at 0.974 (95% CI: 0.920-1.000) for marginal lymphoma vs. mantle cell lymphoma with sensitivity of 88% and specificity of 100%. The AUC was at 0.887 (95% CI: 0.776-0.999) for follicular lymphoma vs. DLBCL with sensitivity of 81.3% and specificity of 83.7%. Conclusions: This data demonstrates that NGS quantification of RNA from 30 CD markers when combined with machine learning is adequate for reliable classification of various types of lymphoma. This approach can provide valuable information to distinguish between difficult diagnoses, and if trained adequately has the potential to expand to more borderline cases. More importantly, this technology can be automated and less susceptible to human errors. RNA quantification using NGS has the potential to replace the need for IHC and can be applied when samples are limited such as in needle aspiration or core biopsies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
GeniusC完成签到,获得积分10
刚刚
1秒前
1秒前
FashionBoy应助咖可乐采纳,获得10
2秒前
CR7应助淳于越泽采纳,获得20
2秒前
victory_liu发布了新的文献求助10
2秒前
亦清完成签到,获得积分10
2秒前
付艳完成签到,获得积分10
3秒前
梦醒完成签到,获得积分10
3秒前
NexusExplorer应助123采纳,获得10
4秒前
喜悦山柳完成签到,获得积分10
4秒前
专一的傲白完成签到 ,获得积分10
4秒前
4秒前
5秒前
咖啡味椰果完成签到 ,获得积分10
5秒前
DDDD发布了新的文献求助10
5秒前
Plucky完成签到,获得积分10
6秒前
FashionBoy应助Zzzzz采纳,获得30
6秒前
哦哟发布了新的文献求助10
7秒前
7秒前
7秒前
Spencer完成签到 ,获得积分10
8秒前
开朗的大叔完成签到,获得积分10
8秒前
111完成签到,获得积分10
8秒前
123发布了新的文献求助10
8秒前
9秒前
mojinzhao完成签到,获得积分10
9秒前
诸葛烤鸭完成签到,获得积分10
10秒前
张岱帅z完成签到,获得积分10
10秒前
Eason完成签到,获得积分10
10秒前
10秒前
咖可乐发布了新的文献求助10
11秒前
小马甲应助幸福的乾采纳,获得10
11秒前
qiuer0011完成签到,获得积分10
12秒前
GGbond完成签到,获得积分10
12秒前
maz123456发布了新的文献求助10
12秒前
yx_cheng应助11111111111111采纳,获得20
12秒前
量子星尘发布了新的文献求助10
12秒前
大模型应助XHL采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582